

1. Stay Tuned (Fall 2020 Midterm 2 Question 5)

PG&E just announced another power outage and you desperately need a radio transmitter to battle the impending telecommunication doom! You need to build an antenna tuner, which is a variable resistor to control the power of the transmitter signal.

This tuner consists of two identical resistive bars $(M_1 \text{ and } M_2)$ of length L, and a cross-sectional area of A, as shown in Figure 1. The strips are made of a material with resistivity ρ . The resistive bars are connected with ideal electrical wires in the following configuration:

Figure 1: Resistive metal bars connected through ideal wires.

(a) Let R_{UV} be the equivalent resistance between nodes U and V in Figure 1. Write an expression for R_{UV} in terms of L, A, ρ and other numerical values. Show your work.

(b) The resistive bar M_1 is flexible, so if we press any point on it a contact is made between M_1 and M_2 . As shown in Figure 2, a sliding contact is used to make a contact at position x_0 .

Figure 2: Sliding switch making a contact between M_1 and M_2 .

(i) Draw a circuit diagram that represents the scenario in Figure 2. The sliding contact has no resistance and acts like a wire when the contact is made. *Hint: Your diagram should have four resistors.*

(ii) Express the equivalent resistance between nodes U and V, i.e., R_{UV} in terms of L, x_0 , A, ρ and other numerical values, when the sliding contact is present.

(iii) Assume $x_0 = 8 \text{cm}$, L = 10 cm, $A = 10^{-3} \text{cm}^2$, and $\rho = 5 \times 10^{-3} \Omega \text{cm}$. Find the value of R_{UV} when the sliding contact is present. Show your work.

(c) (5 points) Now let us model the transmitter as a voltage source V_S , in series with a resistor R_S , while our antenna tuner is represented by R_{UV} . The circuit model is shown in Figure 3:

Figure 3: Circuit model for the radio transmitter.

In order to prevent damage to the tuner, we need to make sure that the current through R_{UV} never exceeds 0.1A. Assuming $20\Omega \le R_{UV} \le 80\Omega$ and $R_S = 50\Omega$, find the maximum allowable value of V_S , so that $I_{UV} \le 0.1$ A for the full range of R_{UV} . Show your work.

2. Superposition

Consider the following circuit:

Let $R_1 = \alpha \Omega$, $R_2 = \beta \Omega$, $R_3 = \gamma \Omega$, $I_s = \delta A$, and $V_s = \varepsilon V$.

(a) With the current source turned on and the voltage source off, find the current I_{R_3} .

(b) With the voltage source turned on and the current source turned off, find the voltage V_{R_3} .

(c) Find the power dissipated across R_3 .

3. Energy/Power (Fall 2021 Midterm 2 Question 19)

In the circuit below, $V_s = 4V$, $I_s = 1.5mA$, and $R_1 = 8000 \Omega$

(a) What is the power dissipated by R_1 ?

(b) What is the power supplied by I_s ?

(c) What is the power dissipated by V_s ?