EECS 16A Designing Information Devices and Systems I Spring 2023 Exam Prep 14A

1. Orthogonal Space (Fall 2022 Final Question 10)

Let \vec{v} be a vector in \mathbb{R}^2 , where \mathbb{R}^2 has an inner product. We define *W* to be the set of all vectors orthogonal to \vec{v} , i.e.

$$W = \{ \vec{w} \mid \langle \vec{v}, \vec{w} \rangle = 0 \}$$
(1)

(a) In the paragraph below, select the best choice for each blank to **complete the proof showing that** *W* **is a subspace**:

First, we need to show that the set contains the zero vector. We see that $\langle \vec{v}, \vec{0} \rangle = 0$, so this condition is fulfilled. Next, we need to show that the set (1)______. Suppose we have $\vec{x}, \vec{y} \in W$, then (2)______, so this condition is fulfilled. Finally, we need to show that the set (3)______. Suppose we have $\alpha \in \mathbb{R}$ and $\vec{x} \in W$, then (4)______, so this condition is fulfilled. Therefore the set is a valid subspace.

(1)	\bigcirc is closed under scalar multiplication	(2)	\bigcirc	$\langle ec{v}^T ec{x}, ec{v}^T ec{y} angle = 0$
	\bigcirc is closed under vector addition		\bigcirc	$\langle \vec{v}, \vec{x} \rangle = \langle \vec{v}, \vec{y} \rangle$
	\bigcirc is homogeneous			
	\bigcirc is non-empty		\bigcirc	$\langle \vec{v} + \vec{x}, \vec{y} \rangle = \langle \vec{v}, \vec{x} \rangle + \langle \vec{v}, \vec{y} \rangle = 0$
	○ fulfills superposition		\bigcirc	$\langle \vec{v}, \vec{x} + \vec{y} \rangle = \langle \vec{v}, \vec{x} \rangle + \langle \vec{v}, \vec{y} \rangle = 0$

- (3) \bigcirc is closed under scalar multiplication (4) $\bigcirc \langle \vec{v}, \alpha \vec{x} \rangle$ \bigcirc is closed under vector addition $\bigcirc \langle \alpha \vec{x}, \alpha \vec{x} \rangle$
 - \bigcirc is homogeneous
 - \bigcirc is non-empty
 - fulfills superposition

4)
$$\bigcirc \langle \vec{v}, \alpha \vec{x} \rangle = \alpha \langle \vec{v}, \vec{x} \rangle = 0$$

 $\bigcirc \langle \alpha \vec{v}, \alpha \vec{x} \rangle = \alpha \langle \vec{v}, \vec{x} \rangle = 0$
 $\bigcirc \langle \alpha \vec{v}^T \vec{x}, \vec{0} \rangle = \alpha \langle \vec{v}^T \vec{x}, \vec{0} \rangle = 0$
 $\bigcirc \alpha \langle \vec{v}, \vec{x} \rangle = \alpha \cdot 0$

1

- (b) Now suppose the inner product is defined as $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T Q \vec{y}$ for $Q \in \mathbb{R}^{2 \times 2}$.
 - i. If $\vec{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and we still define subspace *W* to be the set of all vectors that are orthogonal to \vec{v} from part (a), which of the following options is a basis for *W* if the matrix $Q = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$?
 - $\bigcirc \begin{bmatrix} -2\\3 \end{bmatrix} \bigcirc \bigcirc \begin{bmatrix} 1\\3 \end{bmatrix} \bigcirc \bigcirc \begin{bmatrix} 3\\1 \end{bmatrix} \bigcirc \bigcirc \begin{bmatrix} 1\\1 \end{bmatrix} \bigcirc \bigcirc \begin{bmatrix} 2\\4 \end{bmatrix}$

ii. What are the necessary properties for a *valid inner product*? (Select all that apply.)

positive definiteness	linear
closed under scalar multiplication	non-empty
closed under vector addition	symmetric
quadratic	contains the zero vector

- iii. Which of the following choices of matrix Q results in a valid inner product $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T Q \vec{y}$? (Select all that apply.)
 - $\Box \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix} \qquad \Box \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \qquad \Box \begin{bmatrix} 15 & 0 \\ 0 & 0 \end{bmatrix} \qquad \Box \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$

2. Least Squares (Fall 2022 Final Question 3)

- (a) Consider the system of equations dx = b where d, b ∈ R² and x ∈ R. When applying least squares, we want to find the v ∈ span(d) that is closest to b in Euclidean distance.
 Hint: It might be helpful to draw the vectors.
 - i. When solving for vector \vec{v} , which of the following operations are required?
 - \bigcirc Projecting \vec{b} onto \vec{a}
 - \bigcirc Projecting \vec{a} onto \vec{b}
 - \bigcirc Subtracting \vec{b} from \vec{a}
 - \bigcirc Subtracting \vec{a} from \vec{b}
 - \bigcirc None of the above
 - ii. The vector \vec{v} can also be determined by minimizing the length of the error vector, represented as

$$\bigcirc \vec{v} = \underset{\vec{b}}{\operatorname{argmin}} \|\vec{a} - \vec{b}\|$$
$$\bigcirc \vec{v} = \underset{\vec{v}}{\operatorname{argmin}} \|\vec{a} - \vec{v}\|$$
$$\bigcirc \vec{v} = \underset{\vec{b}}{\operatorname{argmin}} \|\vec{b} - \vec{v}\|$$
$$\bigcirc \vec{v} = \underset{\vec{v}}{\operatorname{argmin}} \|\vec{b} - \vec{v}\|$$

(b) For the following systems of $A\vec{x} = \vec{b}$, determine if they have a unique least squares solution.

i.
$$A = \begin{bmatrix} 1 & 1 \\ 3 & 4 \\ 0 & 0 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
$$\bigcirc \text{ Yes}$$
$$\bigcirc \text{ No}$$
ii.
$$A = \begin{bmatrix} 1 & 4 \\ 3 & 12 \\ 2 & 8 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$$
$$\bigcirc \text{ Yes}$$
$$\bigcirc \text{ No}$$

- (c) For the following three questions, consider the system of $A\vec{x} = \vec{b}$ with $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$
 - i. Can we apply the least squares formula?
 - Yes
 - 🔘 No
 - ii. What is the determinant of $A^T A$?

- iii. (1 point) Does $A\vec{x} = \vec{b}$ have zero, one, or more than one solution for \vec{x} ?
 - \bigcirc No solutions
 - \bigcirc One unique solution
 - \bigcirc More than one solution

(d) Find the best approximation $x = \hat{x}$ to this system of equations:

$$a_1 x = b_1$$
$$a_2 x = b_2$$

,

i. Write the problem into $A\vec{x} \approx \vec{b}$ format and solve for \hat{x} using least squares. Choose the correct \hat{x} .

$$\hat{x} = \frac{a_1b_1 + a_2b_2}{a_1^2 + a_2^2}$$

$$\hat{x} = \frac{a_1b_1 - a_2b_2}{a_1^2 + a_2^2}$$

$$\hat{x} = \frac{a_1b_2 + a_2b_1}{a_1^2 + a_2^2}$$

$$\hat{x} = \frac{a_1b_2 - a_2b_1}{a_1^2 + a_2^2}$$

- ii. Suppose the inner product is defined instead as a non-Euclidean $\langle x, y \rangle = x^T \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} y$. Which of the following expressions must be true with respect to the minimized least squares error vector, \vec{e} ?
 - $\bigcirc \vec{e}^T A = \vec{0}$ $\bigcirc A^T \vec{e} = \vec{0}$ $\bigcirc A^T \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \vec{e} = \vec{0}$ $\bigcirc \left(A^T \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} A \right)^{-1} \vec{e} = \vec{0}$
 - \bigcirc None of the above