EECS 16A Designing Information Devices and Systems I
 Spring $2023 \quad$ Exam Prep 14A

1. Orthogonal Space (Fall 2022 Final Question 10)

Let \vec{v} be a vector in \mathbb{R}^{2}, where \mathbb{R}^{2} has an inner product. We define W to be the set of all vectors orthogonal to \vec{v}, i.e.

$$
\begin{equation*}
W=\{\vec{w} \mid\langle\vec{v}, \vec{w}\rangle=0\} \tag{1}
\end{equation*}
$$

(a) In the paragraph below, select the best choice for each blank to complete the proof showing that W is a subspace:

First, we need to show that the set contains the zero vector. We see that $\langle\vec{v}, \overrightarrow{0}\rangle=0$, so this condition is fulfilled. Next, we need to show that the set (1) \qquad . Suppose we have $\vec{x}, \vec{y} \in W$, then (2) \qquad , so this condition is fulfilled. Finally, we need to show that the set (3) \qquad . Suppose we have $\alpha \in \mathbb{R}$ and $\vec{x} \in W$, then (4) \qquad , so this condition is fulfilled. Therefore the set is a valid subspace.
(1)
is closed under scalar multiplication
\bigcirc is closed under vector additionis homogeneous
\bigcirc is non-empty
fulfills superposition
(2) $\bigcirc\left\langle\vec{v}^{T} \vec{x}, \vec{v}^{T} \vec{y}\right\rangle=0$
$\langle\langle\vec{v}, \vec{x}\rangle=\langle\vec{v}, \vec{y}\rangle$
$\langle\vec{v}+\vec{x}, \vec{y}\rangle=\langle\vec{v}, \vec{x}\rangle+\langle\vec{v}, \vec{y}\rangle=0$
$\langle\vec{v}, \vec{x}+\vec{y}\rangle=\langle\vec{v}, \vec{x}\rangle+\langle\vec{v}, \vec{y}\rangle=0$
(3)is closed under scalar multiplication
\bigcirc is closed under vector addition
is homogeneous
is non-empty
fulfills superposition
(4)
$\langle\vec{v}, \alpha \vec{x}\rangle=\alpha\langle\vec{v}, \vec{x}\rangle=0$
$\langle\alpha \vec{v}, \alpha \vec{x}\rangle=\alpha\langle\vec{v}, \vec{x}\rangle=0$
$\left\langle\alpha \vec{v}^{T} \vec{x}, \overrightarrow{0}\right\rangle=\alpha\left\langle\vec{v}^{T} \vec{x}, \overrightarrow{0}\right\rangle=0$
$\alpha\langle\vec{v}, \vec{x}\rangle=\alpha \cdot 0$
(b) Now suppose the inner product is defined as $\langle\vec{x}, \vec{y}\rangle=\vec{x}^{T} Q \vec{y}$ for $Q \in \mathbb{R}^{2 \times 2}$.
i. If $\vec{v}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and we still define subspace W to be the set of all vectors that are orthogonal to \vec{v} from part (a), which of the following options is a basis for W if the matrix $Q=\left[\begin{array}{ll}2 & 1 \\ 1 & 4\end{array}\right]$?
$\bigcirc\left[\begin{array}{c}-2 \\ 3\end{array}\right]$
$\bigcirc\left[\begin{array}{l}1 \\ 3\end{array}\right]$
O $\left[\begin{array}{l}3 \\ 1\end{array}\right]$
$\bigcirc\left[\begin{array}{l}1 \\ 1\end{array}\right]$
$\bigcirc\left[\begin{array}{l}2 \\ 4\end{array}\right]$
ii. What are the necessary properties for a valid inner product? (Select all that apply.)positive definitenesslinearclosed under scalar multiplicationnon-emptyclosed under vector additionsymmetricquadraticcontains the zero vector
iii. Which of the following choices of matrix Q results in a valid inner product $\langle\vec{x}, \vec{y}\rangle=\vec{x}^{T} Q \vec{y}$? (Select all that apply.)
$\square\left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right]$
$\square\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]$
$\square\left[\begin{array}{cc}15 & 0 \\ 0 & 0\end{array}\right]$
$\square\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$

2. Least Squares (Fall 2022 Final Question 3)

(a) Consider the system of equations $\vec{a} x=\vec{b}$ where $\vec{a}, \vec{b} \in \mathbb{R}^{2}$ and $x \in \mathbb{R}$. When applying least squares, we want to find the $\vec{v} \in \operatorname{span}(\vec{a})$ that is closest to \vec{b} in Euclidean distance.
Hint: It might be helpful to draw the vectors.
i. When solving for vector \vec{v}, which of the following operations are required?Projecting \vec{b} onto \vec{a}Projecting \vec{a} onto \vec{b}Subtracting \vec{b} from \vec{a}Subtracting \vec{a} from \vec{b}None of the above
ii. The vector \vec{v} can also be determined by minimizing the length of the error vector, represented as$\vec{v}=\underset{\vec{b}}{\operatorname{argmin}}\|\vec{a}-\vec{b}\|$$\vec{v}=\underset{\vec{v}}{\operatorname{argmin}}\|\vec{a}-\vec{v}\|$$\vec{v}=\underset{\vec{v}}{\operatorname{argmin}}\|\vec{b}-\vec{v}\|$
$\vec{b}$$\vec{v}=\underset{\vec{v}}{\operatorname{argmin}}\|\vec{b}-\vec{v}\|$
(b) For the following systems of $A \vec{x}=\vec{b}$, determine if they have a unique least squares solution.
i. $\quad A=\left[\begin{array}{ll}1 & 1 \\ 3 & 4 \\ 0 & 0\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$YesNo
ii. $\quad A=\left[\begin{array}{cc}1 & 4 \\ 3 & 12 \\ 2 & 8\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]$YesNo
(c) For the following three questions, consider the system of $A \vec{x}=\vec{b}$ with $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$
i. Can we apply the least squares formula?YesNo
ii. What is the determinant of $A^{T} A$?

$$
\operatorname{det}\left(A^{T} A\right)=\square
$$

iii. (1 point) Does $A \vec{x}=\vec{b}$ have zero, one, or more than one solution for \vec{x} ?No solutionsOne unique solutionMore than one solution
(d) Find the best approximation $x=\hat{x}$ to this system of equations:

$$
\begin{aligned}
& a_{1} x=b_{1} \\
& a_{2} x=b_{2}
\end{aligned}
$$

i. Write the problem into $A \vec{x} \approx \vec{b}$ format and solve for \hat{x} using least squares. Choose the correct \hat{x}.
$\hat{x}=\frac{a_{1} b_{1}+a_{2} b_{2}}{a_{1}^{2}+a_{2}^{2}}$$\hat{x}=\frac{a_{1} b_{1}-a_{2} b_{2}}{a_{1}^{2}+a_{2}^{2}}$$\hat{x}=\frac{a_{1} b_{2}+a_{2} b_{1}}{a_{1}^{2}+a_{2}^{2}}$$\hat{x}=\frac{a_{1} b_{2}-a_{2} b_{1}}{a_{1}^{2}+a_{2}^{2}}$None of the above
ii. Suppose the inner product is defined instead as a non-Euclidean $\langle x, y\rangle=x^{T}\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right] y$. Which of the following expressions must be true with respect to the minimized least squares error vector, $\overrightarrow{\hat{e}}$?$\overrightarrow{\hat{e}}^{T} A=\overrightarrow{0}$$A^{T} \overrightarrow{\hat{e}}=\overrightarrow{0}$

$$
A^{T}\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \overrightarrow{\hat{e}}=\overrightarrow{0}
$$

$\left(A^{T}\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right] A\right)^{-1} \overrightarrow{\hat{e}}=\overrightarrow{0}$None of the above

