
EECS 16A Designing Information Devices and Systems I
Spring 2023 Lecture Notes Note 3

3.1 Linear Dependence
Recall the tomography example from Note 1, in which we tried to determine the composition of a box
of bottles by shining light at different angles and measuring light absorption. The Gaussian elimination
algorithm implied that we needed to take at least 9 measurements to properly identify the 9 bottles in a box
so that we had at least one equation per variable. However, will taking any 9 measurements guarantee that
we can find a solution? Answering this question requires an understanding of linear dependence. In this
note, we will define linear dependence (and independence), and take a look at what it implies for systems of
linear equations.

3.1.1 What is Linear Dependence?

Linear dependence is a very useful concept that is often used to characterize the “redundancy” of information
in real world applications. We will give two equivalent definitions of linear dependence, and formally prove
their equivalence in Note 4.

Definition 3.1 (Linear Dependence (I)): A set of vectors {v⃗1, . . . , v⃗n} is linearly dependent if there exist
scalars α1, . . . ,αn such that α1v⃗1 + · · ·+αnv⃗n = 0⃗ and not all αi’s are equal to zero.

Definition 3.2 (Linear Dependence (II)): A set of vectors {v⃗1, . . . , v⃗n} is linearly dependent if there exist
scalars α1, . . . ,αn and an index i such that v⃗i = ∑ j ̸=i α jv⃗ j.1 In words, a set of vectors is linearly dependent if
any one of the vectors could be written as a linear combination of the rest of the vectors.

Why did we introduce two equivalent definitions? They could be useful in different settings. For example,
it is often easier mathematically to show linear dependence with definition (I). Can you see why? If we
would like to prove linear dependence with definition (II), we need to first choose a vector v⃗i and show that
it is a linear combination of the other vectors. However, with definition (I), we don’t need to try to “single
out” a vector to get started with the proof. We can blindly write down the equation α1v⃗1 + · · ·+αnv⃗n = 0⃗
and begin our proof from there. On the other hand, definition (II) gives us a more intuitive way to talk about
redundancy. If a vector can be constructed from the rest of the vectors, then this vector does not contribute
any information that is not already captured by the other vectors.

Now that we have introduced the notion of linear dependence, what does it mean to be linearly independent?

1In case you are unfamiliar with this notation, the ∑ symbol is simply shorthand for addition. For instance, α1v⃗1 + · · ·+αnv⃗n
can be written as ∑

n
i=1 αiv⃗i or ∑i αiv⃗i, which is a sum over all possible i values. In this instance, ∑ j ̸=i α j⃗v j is the sum over all α j⃗v j

excluding the αi⃗vi term, which can also be calculated as α1⃗v1 + · · ·+αn⃗vn −αi⃗vi.
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3.1.2 Linear Independence

Definition 3.3 (Linear Independence): A set of vectors is linearly independent if it is not linearly depen-
dent. More specifically, from the first definition of linear dependence we can deduce that a set of vectors
{v⃗1, . . . , v⃗n} is linearly independent if α1v⃗1 + · · ·+αnv⃗n = 0⃗ implies α1 = · · ·= αn = 0.

Let’s see some simple examples of linear dependence and linear independence.

Example 3.1 (Linear dependence of 2 vectors): Consider vectors a⃗ =

[
2
1

]
and b⃗ =

[
4
2

]
. These vectors

are linearly dependent because we can write b⃗ as a scaled version of a⃗:

b⃗ =

[
4
2

]
= 2×

[
2
1

]
= 2× a⃗.

Example 3.2 (Linear independence of 2 vectors): Consider vectors a⃗ =

[
2
1

]
and b⃗ =

[
1
5

]
. We will show

that the two vectors are linearly independent. Consider scalars α1,α2 such that α1⃗a+α2⃗b = 0⃗. We can write
this vector equation as a system of linear equations:

α1⃗a+α2⃗b = 0⃗

⇒α1

[
2
1

]
+α2

[
1
5

]
=

[
0
0

]
⇒

[
2α1
α1

]
+

[
α2
5α2

]
=

[
0
0

]
⇒

[
2α1 +α2
α1 +5α2

]
=

[
0
0

]
⇒

{
2α1 +α2 = 0
α1 +5α2 = 0

Solving this system of linear equations with Gaussian elimination yields a unique solution,
[

α1
α2

]
=

[
0
0

]
.

By definition, a⃗ and b⃗ are linearly independent.

Additional Resources For more on the definition of linear dependence, read Strang pages 164-
167 or read Schuam’s pages 121-124. For additional practice with these ideas, try Schuam’s
Problems 4.17 to 4.22, and 4.89 to 4.96.

3.1.3 Linear Dependence and Systems of Linear Equations

Previously, we saw that a system of linear equations can have zero solutions, a unique solution, or infinitely
many solutions. Is there a way to tell what kind of solution a system of linear equations has without running
Gaussian elimination or explicitly solving for the solution? Yes! Recall that a system of linear equations
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can be written in matrix-vector form as A⃗x = b⃗, where A is a matrix of variable coefficients, x⃗ is a vector
of unknown variables, and b⃗ is a vector of values that these weighted sums must equal. The following two
theorems state that just looking at the columns or rows of the matrix A can tell us about the solutions to
A⃗x = b⃗ (we will see the formal proofs of both theorems in Note 4).

Theorem 3.1: If the system of linear equations A⃗x = b⃗ has an infinite number of solutions, then the
columns of A are linearly dependent.

Theorem 3.2: If the columns of A in the system of linear equations A⃗x = b are linearly dependent,
then the system does not have a unique solution.

Let’s think about why this makes sense intuitively. In an experiment, each column in matrix A represents the
influence of each variable xi on the measurements. If the columns are linearly dependent, this means that
some of the variables influence the measurement in the same way, and therefore cannot be disambiguated.
Hence, there won’t be enough information to determine a unique solution. The next example illustrates this
idea.

Example 3.3 (Intuition): Suppose we have a black and white image with two pixels. We cannot directly
see the shade of each pixel, but we can measure how much light the two pixels absorb in total. Can we
figure out the shade of each pixel? Let’s model this as a system of linear equations. Suppose pixel 1 absorbs
x1 units of light and pixel 2 absorbs x2 units of light. Our measurement indicates that total amount of light
absorbed by the image are 10 units of light. Then we could write down the equation,

x1 + x2 = 10. (1)

Written in matrix form, we have

[
1 1

][x1
x2

]
=
[
10
]
. (2)

We see that the columns are
[
1
]

and
[
1
]
. The total amount of light absorbed is influenced by 1 unit of x1 and

1 unit of x2. However, we cannot pin down the exact influence by x1 and x2 because if pixel 1 absorbs c units
less, we can just have pixel 2 absorb c units more. This is connected with the fact that the two columns are
linearly dependent — if one pixel absorbs less, it is possible to find a way such that the other pixel absorbs
more to make up for the loss (the column of that pixel can be written as a linear combination of the columns
of the other pixels).

This result has important implications to the design of engineering experiments. Often times, we can’t
directly measure the values of the variables we’re interested in. However, we can measure the total weighted
contribution of each variable. The hope is that we can fully recover each variable by taking several of
such measurements. Now we can ask: “What is the minimum number of measurements we need to fully
recover the solution?” and “How do we design our experiment so that we can fully recover our solution
with the minimum number of measurements?” Consider the tomography example. We are confident that
we can figure out the configuration of the stack when the columns of the lighting pattern matrix A in A⃗x = b⃗
are linearly independent. On the other hand, if the columns of the lighting pattern matrix are linearly
dependent, we know that we don’t yet have enough information to figure out the configuration. Checking
whether the columns are linearly independent gives us a way to validate whether we’ve effectively designed
our experiment. The main idea here is that if we have n unknowns, we need n or more unique and linearly
independent measurements (equations) to solve for each unknown.
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3.2 Row Perspective
(Note that this section is optional for the course.)

So far, we have seen a number of results relating the columns of a matrix to its corresponding system of
linear equations. But what about the rows? Intuitively, each row represents some measurement: for example,
if our linear system is a1 b1 c1

a2 b2 c2
a3 b3 c3

α1
α2
α3

 ,

then the variables we want to measure are α1, α2, and α3, and the second row represents the measurement
a2α1 + b2α2 + c2α3. If we take less than 3 measurements, then of course we cannot recover all three
variables. So suppose we take 3 or more measurements. If the number of measurements taken is at least
the number of variables and we still cannot completely determine the variables, then at least one of our
measurements must be redundant and is linearly dependent on another measurement (it doesn’t give us any
new information). This intuition suggests that the number of variables we can recover is equal to the number
of unique measurements, or the number of linearly independent rows.

While this is an intuitive argument, we need a formal proof to be sure of the reasoning. This formal proof
will come in a later note when we talk about rank.

Note that we now have two perspectives: in the matrix, each row represents a measurement, while each
column corresponds to a variable. Therefore, if the columns are linearly dependent, then we have at least
one redundant variable. From the perspective of rows, linear dependency tells us that we have one or more
redundant measurements.

3.3 Span
Let’s introduce span, a closely related concept to linear dependence that will be used throughout this course.

Definition 3.4 (Span): The span of a set of vectors {v1, . . . ,vn} is the set of all linear combinations of
{v1, . . . ,vn}. We can write this mathematically as

span(v1, . . . ,vn) =

{
n

∑
i=1

αi⃗vi |αi ∈ R

}

We can now rephrase our second definition of linear dependence: A set of vectors is linearly dependent if
any one of the vectors is in the span of the remaining vectors.

We should also be aware of the following annoying bit of jargon: that when given a matrix A, the range and
column space of A are synonymous both refer to the span of the columns of A!

Additional Resources For more on linear span, read Schaum’s pages 119-121. For additional
practice with these ideas, try Problems 4.13 to 4.16, 4.66, 4.69, and 4.83 to 4.88.
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Example 3.4 (Span Practice): Let’s see how to solve problems involving the span of a set of vectors.
Consider the three vectors: [

1
2

]
,

[
−3
1

]
,

[
−2
−2

]
.

How can we compute and express their span?

First, let’s try to gain some intuition for these vectors, by plotting them on a set of axes:

−3 −2 −1 1 2 3

−2

2

x1

x2

Intuitively, it seems like linear combinations of these three vectors can reach any point on the plane. Let’s

see if we can justify this rigorously. Consider an arbitrary point
[

a
b

]
on the plane. We’d like to see if we

can write this point as a linear combination of our three vectors - in other words, we’d like to show that no
matter what a and b we pick, we can choose scalars c1, c2, and c3 such that

c1

[
1
2

]
+ c2

[
−3
1

]
+ c3

[
−2
−2

]
=

[
a
b

]
.

Applying the rules of vector algebra that we presented in the previous note to simplify the summation on
the left-hand-side, this equation is equivalent to[

(1)c1 +(−3)c2 +(−2)c3
(2)c1 +(1)c2 +(−2)c3

]
=

[
a
b

]
Observe that the above equation is essentially a system of linear equations with three unknowns - c1, c2, and
c3. Writing it in the standard “Ax = b” form, we obtain

[
1 −3 −2
2 1 −2

]c1
c2
c3

=

[
a
b

]
.

Recall our original goal - to show that no matter how a and b are chosen, we can solve for constants c1, c2,
and c3 such that the above equation is satisfied. But now that we have written it in the above form, we know
how to solve it - Gaussian elimination! Remember that since we are trying to solve for the ci as functions
of a and b, a and b should not be treated as unknowns for the purpose of Gaussian elimination, but rather as
arbitrarily chosen constants.
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Observe that the pivot of the first row is already 1, so we can immediately eliminate the coefficient of c1 in
the second row by subtracting twice the first row from the second, to obtain

[
1 −3 −2
0 7 2

]c1
c2
c3

=

[
a

b−2a

]
.

Now, we should scale the second row by a factor of 1/7 in order to get a 1 in the coefficient for c2 in the
second row, so we obtain [

1 −3 −2
0 1 2/7

]c1
c2
c3

=

[
a

(1/7)b− (2/7)a

]
.

Observe that we have now placed our matrix of coefficients in row echelon form, so we can now determine
whether a solution exists. We see here that there are two nonzero rows, no zero rows equating to a nonzero
constant, and three unknowns. Thus, we have a consistent system with fewer equations than unknowns, so
there are an infinite number of solutions, no matter how we choose a and b. The concept of "free variables"
as it relates to span and number of solutions will be discussed later in this course.

In other words, no matter how a and b are chosen, there is not just one, but an infinite number of ways to

compute a linear combination of our three vectors to reach
[

a
b

]
. Thus, we have shown that our three vectors

span the entirety of two-dimensional space - expressed mathematically,

span
([

1
2

]
,

[
−3
1

]
,

[
−2
−2

])
= R2.

3.4 Practice Problems
These practice problems are also available in an interactive form on the course website.

1. Are the vectors a⃗ =

[
4
3

]
and b⃗ =

[
−1
2

]
linearly independent?

2. Are the vectors a⃗ =

 2
2
−1

, b⃗ =

1
6
2

, c⃗ =

−1
0
1

 linearly independent?

3. Suppose for some matrix A, A⃗x1 = b⃗ and A⃗x2 = b⃗, where x⃗1 ̸= x⃗2. Are the columns of A linearly
independent?

4. Is v⃗ =

 1
−1
1

 in the span

0
0
1

 ,

1
2
0

 ,

 2
4
−1

?

5. Which of the following are equivalent to span{⃗v1, v⃗2}?

(a) span{⃗v1, v⃗1 + v⃗2}
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(b) span{⃗v1}
(c) span{⃗v1, v⃗2 −α v⃗1}
(d) (a) and (b)

(e) (a) and (c)
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