
EECS 16A Designing Information Devices and Systems I
Spring 2023 Lecture Notes Note 4

Mathematical Thinking & Derivation
For many students EECS 16A might be the first time you are asked to “prove” an idea or a concept. This
note tries to explain the main ideas behind proofs and give you some tips on how to approach them.

A mathematical proof provides a means for guaranteeing that a statement is true. So what is a proof? A proof
is a finite sequence of steps, called logical deductions, which establishes the truth of a desired statement. In
particular, the power of a proof lies in the fact that using limited (finite) means, we can guarantee the truth
of a statement with infinitely many cases.

More specifically, a proof is typically structured as follows. Recall that there are certain statements, called
axioms or postulates, that we accept without proof (we have to start somewhere). Starting from these axioms,
a proof consists of a sequence of logical deductions: Simple steps that apply the rules of logic. This results in
a sequence of statements where each successive statement is necessarily true if the previous statements were
true. This property is enforced by the rules of logic: Each statement follows from the previous statements.
These rules of logic are a formal distillation of laws that were thought to underlie human thinking.

In this note, we are going to guide you through the process of developing proofs with a few examples. In
particular, we aim to demonstrate the thought process of turning the problem statement into mathematical
form and deriving successive mathematically rigorous statements that leads to the desired result.

When we encounter a proof problem, we generally try to understand the problem by asking the following
questions:

• "What are the things we can assume based on the problem statement?"

• "What is it that we would like to show?"

The answer to the first question gives us the condition that we are working under and the answer to the
second question gives us a clear picture of our goal. Then, we ask the question:

• "How can we utilize what we know to get to what we would like to show under the specified condi-
tion?"

To write a proof, the following steps are useful in guiding your thought process and helping you understand
the fundamental ideas of the problem.

1. Carefully read the statement. Check to see what the direction of the implication is, are you being
asked to assume P is true and prove Q is true (P =⇒ Q)? Or are you being asked to assume Q is true
and prove P is true (Q =⇒ P)?
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2. Write out what you know from the statement of the theorem. Say you are asked to prove some-
thing like “If P is true, then Q is true.” Here, “P is true” is what is given to you/what is known. If the
theorem statement has this written out in word, write it out in mathematical notation. Be explicit. Try
to simplify any complex notation or jargon.

3. Write out what you want to prove. In the example above, what you want to prove is “Q” is true.
Again, this might be given to you in words, make sure you translate it into equations. Simplify. Make
sure you write this on the paper, even though it seems trivial, it can often help. If there are different
ways of writing this – write out both. For example, if you want to prove a set of vectors is linearly
dependent, you have two definitions of linear dependance you can work with. Write out both and
move forward with whichever definition is more helpful in the context of the proof.

4. Observe the two statements you just wrote down for what is known and what you want to prove.
Find similarities. Take note of these. It might help to also write them down. How might one of the
expressions you wrote be made to look like the other?

5. Try out a simple example. Now that you have written out what is given and what you want to
prove, try thinking about a simpler version. For example, if you are asked to prove something for an
n×n matrix, first try writing out the same statements for a 2×2 matrix. Check again for similarities
between what is known and what you want to prove. See if you can prove the theorem for the simpler
case of 2×2 then try generalizing this to an arbitrary n×n matrix.

In the process of trying out an example, you may notice a pattern in your working that extends to the
general proof. Don’t be afraid to try several examples, if just one isn’t giving you enough intuition.
Trying out examples is also a great way of ensuring that you understand what you want to prove in
concrete terms, rather than just as an abstract claim.

6. Manipulate both sides of the claim. JUSTIFY each step. After coming up with an algebraic
representation of the desired claim, try to manipulate both what you are given and what you are trying
to prove, to see if you can simplify the desired claim. Often, it helps to get rid of complex notation as
part of this process - for instance, if you see a summation expressed using ∑ notation, it might help to
write it out explicitly to get a better understanding of what exactly is being summed.

Still, at this stage it is important to ensure that your manipulations are valid - it’s no use making an
amazing simplification if it turns out to be wrong! It can never hurt to break down complex steps into
multiple smaller ones, and always ask yourself what conditions are needed for each step to be true.
For instance, if you are dividing two quantities, then you should ensure that you are not dividing by
zero!

7. Different approaches. There are different ways to prove a statement. You might encounter some of
the following types of proofs.

• Direct proofs. This style of proof directly shows what is to be proven from what is known by
doing a series of mathematical and logical steps.

• Constructive proofs. Essentially, when you are asked to prove that a certain object “exists”, you
can prove the statement by explicitly constructing the object.

• Proof by contradiction. Another common technique when asked to prove a claim is to try and
show that it is impossible for the claim to not be true. This technique tends to be useful when
the negation of the desired claim is easier to express algebraically than the claim itself.

No one approach is better or more powerful than any other approach — there is no hierarchy. When
you are thinking about proofs try out different approaches to see which one might work.
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Solving proof problems are very similar to solving design problems, which is one of the focuses of this
course. In a proof, there is something we want to show, and in a design problem, there are specifications we
want our design to meet. Both cases are open ended, and we frequently have to integrate many ideas and
explore several different possibilities to reach a solution. Think of the different proof techniques we have
introduced as a set of tools in a toolbox that can be used in different ways to solve different problems.

The key to getting better at doing proofs is by doing a lot of proofs! For the rest of this Note, we’ll look at
some examples based on the concepts introduced in Note 3.

Example 4.1 (Constructive Proof): Prove that span
{[

1
1

]
,

[
1
−1

]}
= R2

First, let’s figure out exactly what the question is asking us to prove. The span of two vectors is a set of
all vectors that can be formed as a linear combination of those two vectors. R2 is the set of all (Cartesian)
vectors with two real components.

We want to show that these two sets are equal, meaning that no element can be in one set but not the other.
Thus, we need to show

1. That every vector in the given span is inside R2, and that

2. Every vector in R2 is in the given span.

Let’s prove each of these statements in order. First, how do we show that every vector in span
{[

1
1

]
,

[
1
−1

]}
is contained within R2? Let’s express what we are given algebraically. Consider an arbitrary vector u⃗ ∈

span
{[

1
1

]
,

[
1
−1

]}
. By the definition of span and linear combinations, we know that we can write

u⃗ = α

[
1
1

]
+β

[
1
−1

]
for some real scalar coefficients α and β . By the rules of vector arithmetic, we can multiply in our scalar
coefficients and simplify to obtain

u⃗ =

[
α +β

α −β

]
.

Why is this vector in R2? Well, since α and β are both real numbers, their sums and differences are both
also real, as real numbers are closed under addition. And u⃗ clearly has exactly two components. Thus,

u⃗ ∈ R2, for arbitrary real scalars α and β . Since u⃗ could have been any vector in span
{[

1
1

]
,

[
1
−1

]}
, we

have shown that any vector in the given span is inside R2, which is the first thing we wanted to show.

But we’re not done yet! All we’ve done is shown that span
{[

1
1

]
,

[
1
−1

]}
⊆ R2 (i.e. the given span is a

subset of the set of points on the real 2D plane) - there might still exist a vector outside of the given span
that is still within R2! Let’s now try to show that every vector in R2 lies in the given span, by writing any
vector in R2 as a linear combination of the two given vectors.
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We’ll start with an arbitrary vector u⃗ ∈ R2. By definition, u⃗ has two real components, so it can be written as

u⃗ =

[
u1
u2

]
where u1 and u2 are both real scalars. We want to know if u⃗ can be written as a linear combination of the
two given vectors, and so must ask whether we can find real scalars α and β (that will depend on u1 and u2)
such that

α

[
1
1

]
+β

[
1
−1

]
=

[
u1
u2

]
?

Manipulating the above equation, we obtain the linear system[
1 1
1 −1

][
α

β

]
=

[
u1
u2

]
.

We want to determine whether there will always exist real solutions α and β to the above linear system, no
matter what u1 and u2 are. And we know how to do this - Gaussian elimination!

Rewriting the above as an augmented matrix and performing row operations without comment, we obtain[
1 1 u1
1 −1 u2

]
⇐⇒

[
1 1 u1
0 −2 u2 −u1

]
⇐⇒

[
1 1 u1
0 1 u1−u2

2

]
⇐⇒

[
1 0 u1+u2

2
0 1 u1−u2

2

]
.

Rewriting our end result in matrix-vector form once again, we obtain[
1 0
0 1

][
α

β

]
=

[u1+u2
2

u1−u2
2

]
,

which can be expanded and rearranged as

α =
u1 +u2

2

β =
u1 −u2

2
.

What have we shown? Since we proved in an earlier note that Gaussian elimination cannot introduce spuri-
ous solutions, we’ve shown that for all u1 and u2, we can produce coefficients α and β such that

α

[
1
1

]
+β

[
1
−1

]
=

[
u1
u2

]
= u⃗.

So all u⃗ ∈ R2 can be written as a linear combination of our two vectors! Thus,

span
{[

1
1

]
,

[
1
−1

]}
⊇ R2,
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meaning that the set of points on the real 2D plane is also a subset of the given span, which when combined
with our earlier result proves that the two sets are equal, as desired! This completes our proof. 1

Notice that the second half of this proof was a “constructive proof” since, in order to show that the coeffi-
cients α and β existed for all u⃗, we were actually able to construct them explicitly!

Example 4.2 (Definition equivalence): Recall that in Note 3 we gave two definitions of linear dependence
(repeated below) that we claimed were equivalent. Here, we will formally prove that they are.

(I) A set of vectors {v⃗1, . . . , v⃗n} is linearly dependent if there exist scalars α1, . . . ,αn such that α1v⃗1 +
· · ·+αnv⃗n = 0⃗ and not all αi’s are equal to zero.

(II) A set of vectors {v⃗1, . . . , v⃗n} is linearly dependent if there exist scalars α1, . . . ,αn and an index i such
that v⃗i = ∑ j ̸=i α jv⃗ j. In words, a set of vectors is linearly dependent if any one of the vectors could be
written as a linear combination of the rest of the vectors.

First, we ask the question, “What does it mean when we say two definitions are equivalent?” It means that
when the condition in definition (I) holds, the condition in definition (II) must hold as well. And when the
condition in definition (II) holds, the condition in definition (I) must also hold. So there are two directions
that we have to show:

(i) To see how definition (II) implies definition (I), we start from the condition in definition (II) — sup-
pose there exist scalars α1, . . . ,αn and an index i such that v⃗i = ∑ j ̸=i α jv⃗ j. We want to somehow transform
this equation into the form that appears in definition (I). How can we achieve that? We can move v⃗i to the
right:

0⃗ =−1× v⃗i +∑
j ̸=i

α jv⃗ j. (1)

We see that if we set αi =−1, we can make the right hand side look like the form given in definition (I):

0⃗ = αi × v⃗i +∑
j ̸=i

α jv⃗ j = ∑
j

α jv⃗ j. (2)

Since αi =−1, at least one of the α j terms is not zero, and the condition in definition (I) is satisfied.

(ii) Now let’s show the reverse — that definition (I) implies definition (II). First, suppose the condition
in definition (I) is true. Then, there exist scalars α1, . . . ,αn such that

α1v⃗1 + · · ·+αnv⃗n = 0⃗, and not all αi’s are equal to zero. (3)

Let’s assume that α1 is one of the nonzero ones (since we can always reorder terms in the summation because
addition is commutative) 2. Now how do we get the equation into the form identical to that in definition (II)?
Observe that if we move α1v⃗1 to the opposite side of equation and divide both sides by α1, we have

v⃗1 = ∑
j ̸=1

(
α j

α1

)
v⃗ j. (4)

1Note that this small empty box is used to (satisfyingly) denote the end of a proof.
2Notice that we could have also chosen α2 ̸= 0, α3 ̸= 0, or any index i so that αi ̸= 0. The convention is to set the first index, in

this case 1, to be nonzero. In mathematical texts, you may see “Without loss of generality (W.L.O.G.), we let α1 ̸= 0.”
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We see that we have constructed a linear combination exactly in the form of the second definition, com-
pleting the second half of the proof. With these two directions of proof, we have now proven that the two
definitions are equivalent.

Next, we will prove Theorems 3.1 and 3.2 from Note 3 about the connection between linear dependence and
the number of solutions to a system of linear equations.

Example 4.3 (Theorem 3.1): If the system of linear equations A⃗x = b⃗ has an infinite number of
solutions, then the columns of A are linearly dependent.

If the system has infinite number of solutions, it must have at least two distinct solutions. Let’s call them x⃗1
and x⃗2. (Note that x⃗1, x⃗2 are full vectors, not vector elements.) Then x⃗1 and x⃗2 must satisfy

Ax⃗1 = b⃗ (5)

Ax⃗2 = b⃗. (6)

Subtracting the first equation from the second equation, we have A(x⃗2 − x⃗1) = 0⃗. Let α⃗ =

α1
...

αn

= x⃗2 − x⃗1.

Because x⃗1 and x⃗2 are distinct, not all αi’s are equal to zero. Let the columns of A be a⃗1, . . . , a⃗n. Then,
Aα⃗ = ∑

n
i=1 αia⃗i = 0⃗ (see below property of matrix multiplication). By definition (I) of linear dependence,

the columns of A are linearly dependent.

Note that in this proof, we used the property of matrix multiplication that Aα⃗ = ∑
n
i=1 αi⃗ai. We scale each

column and add them together. In other words, matrix-vector multiplication is a linear combination of
columns. This property is often a useful way to think about matrix multiplication. The following example
might help: a1 b1 c1

a2 b2 c2
a3 b3 c3

α1
α2
α3

=

α1a1 +α2b1 +α3c1
α1a2 +α2b2 +α3c2
α1a3 +α2b3 +α3c3

= α1

a1
a2
a3

+α2

b1
b2
b3

+α3

c1
c2
c3


Example 4.4 (Theorem 3.2 (Proof by contradiction)): If the columns of A in the system of linear
equations A⃗x = b are linearly dependent, then the system does not have a unique solution.

If a theorem statement asks you to prove that something does not exist (e.g. the inverse of a matrix does not
exist, or a unique solution does not exist etc.) it is often useful to consider a proof by contradiction. Assume
that the thing does exists, and then show that making that assumption leads to some contradiction, therefore
proving that it cannot exist in the first place.

Let’s walk through this proof step by step: we’ll start by assuming we have a matrix A with linearly depen-
dent columns, and then we will show that this means that the system does not have a unique solution.

Since we are interested in the columns of A, let’s start by explicitly defining the columns of A:

A =

 | | |
a⃗1 a⃗2 . . . a⃗n

| | |

 ,
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Now, first, let us write out what is known to us.

By the definition of linear dependence, there exist scalars α1, . . . ,αn such that α1⃗a1 + . . .+αn⃗an = 0⃗ where
not all of the αi’s are zero. We can put these αi’s in a vector

α⃗ =

α1
...

αn


and by the definition of matrix-vector multiplication, we can compactly write the expression above:

Aα⃗ = 0⃗

where α⃗ ̸= 0⃗.

What do we want to prove?

We are trying to show that the system of equations A⃗x = b⃗ does not have a unique solution. Let us assume
the opposite, that we do have a unique solution, and then arrive at a contradiction.

Let’s call our unique solution x⃗0:

Ax⃗0 = b⃗

Ax⃗0 + 0⃗ = b⃗

Ax⃗0 +Aα⃗ = b⃗

A(x⃗0 + α⃗) = b

Therefore, x⃗0 + α⃗ is also a solution to the system of equations! Since α⃗ ̸= 0⃗, we know that x⃗0 ̸= x⃗0 + α⃗ .
Therefore, x⃗0 cannot be a unique solution and we have reached a contradiction!

Note that we can add any multiple of α⃗ to x⃗ and it will still be a solution – therefore, if there is at least one
solution to the system and the columns of A are linearly dependent, then there are infinite solutions.

Example 4.5 (Constructive proof): 1. Let {v⃗1, v⃗2, . . . , v⃗n} be a set of linearly dependent vectors in Rn.
Take any matrix A ∈ Rm×n. Prove that the set of vectors {Av⃗1,Av⃗2, . . . ,Av⃗n} is linearly dependent.

Proof: i). What do we know? Based on the problem statement, we know that {v⃗1, v⃗2, . . . , v⃗n} is a set
of linearly dependent vectors. How do we translate this into mathematical form? Recall one of the two
definitions of linear dependence we introduced in the previous note – the set of vectors {v⃗1, v⃗2, . . . , v⃗n} is
linearly dependent if there exists an index i and scalars α j’s such that

v⃗i = ∑
j ̸=i

α jv⃗ j. (7)

ii). What would we like to show? We would like to show that the set of vectors {Av⃗1,Av⃗2, . . . ,Av⃗n} is
linearly dependent. Again using the definition of linear dependence, we can translate it into a mathematical
statement – we would like to show that there exist index k and scalars βl’s such that
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Av⃗k = ∑
l ̸=k

βl (Av⃗l) . (8)

iii). Now, how do we use what we know mathematically from (1) to prove the mathematical statement in
(2)? We somehow would like to get vectors of the form A⃗v. How could we do that? Let’s multiply both
sides of equation (7) by the matrix A:

Av⃗i = A

(
∑
j ̸=i

α jv⃗ j

)
. (9)

By distributivity of matrix-vector multiplication, we know that

A

(
∑
j ̸=i

α jv⃗ j

)
= ∑

j ̸=i
A(α jv⃗ j) = ∑

j ̸=i
α j (Av⃗ j) . (10)

Now, we have that

Av⃗i = ∑
j ̸=i

α j (Av⃗ j) , (11)

which is in exactly the mathematical form we would like to show in (8). So what are the values of the β ’s
we should choose in (8)? We have βl = αl for all l.

Hence, we have completed our proof by explicitly finding a linear combination of the columns of matrix A
that gives another column of the matrix.

Example 4.6 (Direct proof): If v⃗1, v⃗2, and v⃗1 + v⃗2 are all solutions to the system of linear equation
A⃗x = b⃗, prove that b⃗ must be the zero vector.
Proof: What does it mean for v⃗1, v⃗2, and v⃗1 + v⃗2 to be the solutions to A⃗x = b⃗? It means these vectors must
satisfy the following equations:

Av⃗1 = b⃗ (12)

Av⃗2 = b⃗ (13)

A(v⃗1 + v⃗2) = b⃗ (14)

Notice that using distributivity of matrix-vector multiplication, equation (8) can be rewritten as

Av⃗1 +Av⃗2 = b⃗. (15)

Now from equation (6) and (7), we can substitute Av⃗1 and Av⃗2 with the vector b⃗, which leads us to

b⃗+ b⃗ = b⃗. (16)

Subtracting b⃗ from both sides of the equation above, we have

b⃗ = 0⃗. (17)
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Hence b⃗ is the zero vector, as desired.

This note has covered the major proof techniques that will be useful and relevant for this course, along
with many examples. It also serves as an introduction to the more complex proof techniques that you will
encounter in CS 70.
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