
EECS 16A Designing Information Devices and Systems I
Spring 2023 Lecture Notes Note 8

8.1 Subspace
In previous lecture notes, we introduced the concept of a vector space and the notions of basis and dimension.
In this note, we introduce the idea of subspaces, as it is often useful to only look at part of the entire set of
vectors in a vector space.

Definition 8.1 (Subspace): A subspace U is a subset of a vector space V that satisfies the following three
properties:

• Contains the zero vector: 0⃗ ∈ U.

• Closed under vector addition: For any two vectors v⃗1, v⃗2 ∈ U, their sum v⃗1 + v⃗2 must also be in U.

• Closed under scalar multiplication: For any vector v⃗ ∈ U and scalar α ∈ R, the product α v⃗ must also
be in U.

Equivalently, a subspace is a subset of the vectors in a vector space where any linear combination of the
vectors in the subset lies within the subset. Just as basis and dimension are defined for vector spaces, they
have equivalent definitions for subspaces. A basis of a subspace is a set of linearly independent vectors that
span the subspace, and the dimension of a subspace is the number of vectors in its bases.

In the following sections, we will explore a few key subspaces.

Additional Resources For more on subspaces, read Strang pages 125 - 127 and try Problem Set
3.1. In Schaum’s, read pages 117-119 and try Problems 4.8 to 4.12, and 4.77 to 4.82.

8.2 Column Space
We can think of a matrix as a linear function that acts on vectors. Consider the matrix A in Rn×m – it takes
the vectors that live in Rm (an m-dimensional space) and outputs vectors that live in Rn (an n-dimensional
space). We say that the range of a function is the space of all outputs that the function can map to.

What is the range of our matrix? To answer this we write A in terms of its columns,

A =

 | | |
a⃗1 a⃗2 . . . a⃗m

| | |

 , (1)
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where the vectors a⃗1, . . . , a⃗m each live in Rn. When viewed as a function, the input to A is any vector x⃗ that
lives in Rm, and the output is A⃗x which is in Rn. Recall that x⃗, like any member of Rm, can be written as

x⃗ =


x1
x2
...

xm

 . (2)

From this we have

A⃗x =

 | | |
a⃗1 a⃗2 . . . a⃗m

| | |




x1
x2
...

xm

=
m

∑
k=1

xka⃗k, (3)

so we can conclude that the range of A is the space of all possible linear combinations of its columns, or the
span of (the columns of) A, which we can write as

Col(A) = {⃗v | v⃗ =
m

∑
i=1

xi⃗ai,where xi’s are scalars}, (4)

also called the column space of A. Note that the term range is also often used interchangeably with the term
“column space” - for our purposes, both terms mean exactly the same thing when used to describe a matrix.
We know that Col(A) is a subset of Rn, but is it also a subspace? Let’s see if it satisfies each condition
described in Section 8.1.

• We know that the zero vector is in Col(A) because A applied to the zero vector gives the zero vector:
A⃗0 = 0⃗.

• If v⃗1, v⃗2 are in Col(A), then there exist u⃗1, u⃗2 ∈ Rm such that A⃗u1 = v⃗1 and A⃗u2 = v⃗2. Adding the two
equations together, we have (due to the distributivity of matrix-vector multiplication):

v⃗1 + v⃗2 = A⃗u1 + A⃗u2 = A (⃗u1 + u⃗2) . (5)

This tells us that v⃗1 + v⃗2 is in Col(A) as well.

• If v⃗ is in Col(A), then there exists u⃗ ∈ Rm such that A⃗u = v⃗. For any scalar α , we can write

α v⃗ = αA⃗u = A(α u⃗) . (6)

This says that α v⃗ is also in Col(A).

As a result, we can see that Col(A) is a subspace.

Additional Resources For more on column space, read Strang pages 127 - 129. For additional
practice with these ideas, try Problem Set 3.1.
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8.2.1 Rank: Dimension of the Range
What is the dimension of Col(A)? A reasonable guess would be n, since the vectors in our span live in
Rn. However, the matrix A will not necessarily be able to output every possible vector in Rn, so our range
will not always equal Rn. The dimension of Col(A) cannot be greater than n, since Col(A) is a subset of
Rn, but it can certainly be less. For example, say that A is a zero matrix. In that case, its output would be
zero-dimensional, as it can only output 0⃗. Recall that the dimension of a space is the minimum number of
parameters needed to describe a vector in that space. Therefore, if the space only contains one vector (such
as 0⃗), no parameters are needed to distinguish that vector from any other vector in that space — there are no
other vectors. Hence, the dimension of Col(A) where A is a zero matrix is just zero.

Considering the definition in Equation (4), we see that only m parameters are chosen: x1,x2, · · · ,xm. As a
result, the dimension of the span cannot be greater than m, even if m is less than n. How can this be, when
the vectors in Col(A) each have n components? In defining our span, we have constrained the kinds of
vectors that can live in our space. Therefore, we may be able to use fewer parameters than components in
each vector to distinguish the vectors in this space.

Given our discussion thus far, we might be tempted to say that the span is min(m,n) — the minimum of m
and n — but this is not completely true. The columns of A may be linearly dependent, meaning that some
vectors are actually redundant. Any vector in Col(A) can always be represented as a linear combination of
the linearly independent columns of A. For example, take

A =


2 0 2
3 2 5
5 1 6
2 2 4

 (7)

The last column is not linearly independent, as it can be obtained by adding the first two columns. Let us
take the following linear combination of the columns of A:

2


2
3
5
2

+3


0
2
1
2

+4


2
5
6
4

 (8)

You can verify that we can obtain the same result by taking a linear combination of only the first two
columns:

2


2
3
5
2

+3


0
2
1
2

+4


2
5
6
4

=


12
32
37
26

= 6


2
3
5
2

+7


0
2
1
2

 . (9)

More generally, you can verify

x1


2
3
5
2

+ x2


0
2
1
2

+ x3


2
5
6
4

= x̃1


2
3
5
2

+ x̃2


0
2
1
2

 , x̃1 = x1 + x3,and x̃2 = x2 + x3, (10)

Since the last column is the sum of the first two columns, we can add x3 to x1 and x2 to obtain any possible
linear combination of all columns in A. Since the dimension is given by the smallest number of parameters
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needed to identify any element in the space, it turns out that the dimension of Col(A) is equal to the number
of linearly independent columns of A, which will be less than or equal to min(m,n).

dim(Col(A))≤ min(m,n). (11)

Definition 8.2 (Rank): The rank of a matrix is the dimension of the span of its columns.

rank(A) = dim(Col(A))

For example, the rank of the matrix

A =


2 0 2
3 2 5
5 1 6
2 2 4

 (12)

defined previously is 2, since it has two linearly independent columns.

8.3 Loss of Dimensionality and Nullspace
In the previous example, we saw that the dimension of the output space can be smaller than the dimension of
the input space. In this section, we’ll explore where is the “remaining dimensionality” is going – somewhere
called the nullspace.

Definition 8.3 (Nullspace): The nullspace of A consists of all vectors x⃗ in Rm such that A⃗x = 0⃗:

N(A) = {⃗x | A⃗x = 0⃗, x⃗ ∈ Rm}. (13)

The nullspace of A is the set of vectors that get mapped to zero by A.

What is the dimension of the nullspace? We know that it can be at most m, since all of the input vectors have
m components. However, unless A is the zero matrix, not every input gets mapped to zero, so in general the
dimension should be less than m. The question we need to ask is how many independent ways can we create
the zero vector by taking linear combinations of the columns of A. Recall that

A⃗x =
m

∑
k=1

xi⃗ak, (14)

where again xi are the free parameters. So our task is to find vectors x⃗ such that

m

∑
i=1

xi⃗ai = 0⃗ (15)

First note that the only way ∑
m
i=1 xi⃗ai = 0⃗ (non-trivially) is if the columns of A are not all linearly independent.

This holds by definition of linear independence. We can represent A in terms of its linearly independent
columns and dependent columns, a⃗i and a⃗d respectively. Specifically, we can start with an empty set, and
then we add columns of A into the set as long as the set stays linearly independent. Once we have no more
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columns that we can add, the columns in this set are a⃗i and the rest of the columns of A are a⃗d . Of course,
this set will be different depending on the order you consider the columns of A. However, the size of the set
will always be the same, or equal to the dimension of Col(A) (Hint: show that this set is a basis for Col(A)).

Assuming there are j < m linearly independent columns1,

A =

 | | |
a⃗1 a⃗2 . . . a⃗m

| | |

=

 | | | |
a⃗i

1 . . . a⃗i
j a⃗d

1 . . . a⃗d
m− j

| | | |

 . (16)

We can then break up the summation in equation (15) into two summations one for the linearly independent
columns and another for the linearly dependent columns,

j

∑
k=1

xi
ka⃗i

k +
m− j

∑
k=1

xd
k a⃗d

k = 0⃗, (17)

where the xi
k and xd

k are the values of x⃗ that multiply the linearly independent and dependent columns of A
respectively. If we order the columns of A such that the linearly independent ones come first, then xi

k = xk
for k = 1, . . . , j and xd

k = xk for k = j+1, . . . ,m. Rearranging a bit we get

j

∑
k=1

xi
ka⃗i

k =−
m− j

∑
k=1

xd
k a⃗d

k (18)

Remember we get to choose the parameters in our vector x⃗ that will satisfy (15). We know that in the
total summation at least one linearly dependent vector must be multiplied by a nonzero parameter, since the
linearly independent vectors alone cannot be linearly combined (non-trivially) to get 0⃗. With this constraint
let us then simplify our problem. We will impose that xd

1 be nonzero, and set the other parameters multiplying
linearly dependent vectors equal to zero. That is xd

2 = . . .= xd
m− j = 0. Since a⃗d

1 is linearly dependent on the
a⃗i

k’s we know that there exist a unique set of numbers β 1
1 ,β

1
2 , . . . ,β

1
j such that

j

∑
k=1

β
1
k a⃗k = a⃗d

1 . (19)

In other words there is a unique linear combination of our linearly independent vectors that equals a⃗d
1 . As an

aside, if a vector can be represented as a linear combination of linearly independent vectors then this
representation is unique. You can try to prove this. Hint: Assume that two representations exists, set
the two representations equal to one another, and see if the linear independence still holds. Rearranging
we get

j

∑
k=1

−β
1
k a⃗i

k + a⃗d
1 = 0⃗, (20)

1Please note that the linearly independent columns do not all have to be next to another, we just write it this way to ease the
presentation. The results we show will still hold even if the linearly independent columns are not side by side.
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which is also equal to

j

∑
k=1

−β
1
k a⃗i

k + a⃗d
1 +

m− j

∑
k=2

0⃗ad
k = 0⃗. (21)

Notice that the last summation on the left hand side is equal to zero, and we only include it to more clearly
show one of the vectors in the nullspace, namely

x⃗ =



−β 1
1

−β 1
2

...
−β 1

j
1
0
0
...
0


(22)

Can we find others? Well the first thing we can do is multiply equation (19) by our free parameter xd
1 ,

xd
1(

j

∑
k=1

β
1
k a⃗k) = xd

1 a⃗d
1 . (23)

Similarly we can conclude

j

∑
k=1

−xd
1β

1
k a⃗i

k + xd
1 a⃗d

1 +
m− j

∑
k=2

0⃗ad
k = 0⃗. (24)

Since xd
1 is a free parameter any vector of the form

x⃗ =



−β 1
1 xd

1
−β 1

2 xd
1

...
−β 1

j xd
1

xd
1
0
0
...
0


=



−β 1
1

−β 1
2

...
−β 1

j
1
0
0
...
0


xd

1 (25)

will also be in the nullspace! Are there others? Yes. There is nothing special about choosing the parameter
of the first linearly dependent vector to be the nonzero parameter. We can repeat the same procedure for
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each of the linearly dependent columns, to obtain new vectors in the nullspace. For example say that we set
xd

1 = xd
3 = . . .= xd

m− j = 0, and leave xd
2 as our nonzero parameter we will find that

x⃗ =



−β 2
1

−β 2
2

...
−β 2

j
0
1
0
...
0


xd

2 , (26)

is also in the nullspace, where ∑
j
k=1 β 2

k a⃗k = a⃗d
2 . This procedure can be done for each linearly dependent

vector, for example if xd
3 is the nonzero parameter we will get

x⃗ =



−β 3
1

−β 3
2

...
−β 3

j
0
0
1
...
0


xd

3 , (27)

Furthermore, we can add vectors together from our nullspace together to get other vectors in the nullspace.
Aside: Try to prove this. Hint: if x⃗1 and x⃗2 are in the nullspace of A, what can be said about A(⃗x1+ x⃗2)?
This means that

x⃗ =



−β 1
1

−β 1
2

...
−β 1

j
1
0
0
...
0


xd

1 +



−β 2
1

−β 2
2

...
−β 2

j
0
1
0
...
0


xd

2 +



−β 3
1

−β 3
2

...
−β 3

j
0
0
1
...
0


xd

3 + . . .+



−β
m− j
1

−β
m− j
2
...

−β
m− j
j
0
0
0
...
1


xd

m− j (28)

is also in the nullspace. Notice that once we choose the xd parameters then the xi parameters are fixed. This
is because the xd parameters control how much of the linearly dependent columns of A are being put into the
summation, and the xi parameters must ensure that the exact amount of linearly independent columns are
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included to cancel out the linearly dependent columns so that the output be zero. So we finally conclude that
the dimension of the nullspace is equal to the number of our xd parameters, which is equal to the number of
linearly dependent columns of A. We will work out some examples in the next section.

The last point we would like to highlight here is that the dimension of the range of A is equal to the number
of linearly independent columns, and the dimension of the nullspace of A is equal to the number of linearly
dependent columns. Thus

m−dim(Col(A)) = dim(N(A)), (29)

so the loss of dimensionality from the input space to the output space shows up in the nullspace! This result
is called the rank-nullity theorem.

Additional Resources For more on nullspace and rank, read Strang pages 135 - 141 and try
Problem Set 3.2.

8.4 Computing the Nullspace
So now we will show you how to compute the nullspace of a matrix systematically. For a vector to be in the
nullspace it must weight the linearly independent columns appropriately to cancel out the weighted linearly
dependent columns, and what we will show next will find all such vectors that do so.

In solving for the nullspace, we are fundamentally trying to solve the system of equations A⃗x = 0⃗. We know
that row reducing does not affect the solution of the system of equations, so we will assume that we’ve
already performed Gaussian Elimination until we have an upper triangular matrix. If the matrix is not upper
triangular then it can first be row reduced and the techniques will apply. Working with upper triangular
matrices makes its much easier to find the linearly independent columns (the columns with pivots) and
figure out how the linearly independent columns should be combined to cancel out the linearly dependent
columns. We will work with the matrix

A =


1 2 0 3 0
0 0 1 2 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 . (30)

First we identify the linearly dependent columns, which in this case could be columns 2 and 4. To be clear,
the set of linearly dependent columns we chose is


2
0
0
0
0

 ,


3
2
0
0
0


 (31)
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and the set of linearly independent columns includes columns 1, 3, and 5,


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0


 . (32)

Note that the choice of linearly dependent columns need not be unique. All that is needed is that any vector
in the linearly dependent columns we choose can be written as a linear combination of the vectors in the
set of linearly independent columns and, of course, the columns in the linearly independent set should be
linearly independent.

We want to find all possible scalars x1,x2,x3,x4,x5 such that

x2 ×


2
0
0
0
0

+ x4 ×


3
2
0
0
0

+ x1 ×


1
0
0
0
0

+ x3 ×


0
1
0
0
0

+ x5 ×


0
0
1
0
0

= 0⃗. (33)

Rather than considering all the linearly dependent vectors at once, we can consider them individually and
sum up the contribution from each linearly dependent columns at the end. Let us first impose that the first
linearly dependent column must have a weight of one in the summation and the other linearly dependent
columns have weights of zero. After this, we will repeat this and only allow the second linearly dependent
column to show up in the summation. Let’s start with the first linearly dependent column, we want to find
the unique weighting of the linearly independent columns so that the resulting sum cancels out the first
linearly dependent column. It is easy to see that

1×


2
0
0
0
0

+0×


3
2
0
0
0

= 2×


1
0
0
0
0

+0×


0
1
0
0
0

+0×


0
0
1
0
0

 . (34)

Now, as before, the equality would hold if we multiply both sides of the equation by any scalar α ∈ R

α ×


2
0
0
0
0

+0×


3
2
0
0
0

= 2α ×


1
0
0
0
0

+0×


0
1
0
0
0

+0×


0
0
1
0
0

 . (35)

Note that essentially we can treat α as a free variable that can vary its value however we want while satisfying
the above equation. Moving everything to the left hand side, we have

α ×


2
0
0
0
0

+0×


3
2
0
0
0

+(−2α)×


1
0
0
0
0

+0×


0
1
0
0
0

+0×


0
0
1
0
0

= 0. (36)
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Now we see that any vector of the form x⃗ =


x1
x2
x3
x4
x5

 =


−2α

α

0
0
0

 =


−2
1
0
0
0

α is in the nullspace of A. Now

let’s set the weight of the second linearly dependent column to one and set the weight of the first linearly
dependent column to zero. Similarly, we can find the unique weightings of the linearly independent columns
that sum to the second linearly dependent column.

0×


2
0
0
0
0

+1×


3
2
0
0
0

= 3×


1
0
0
0
0

+2×


0
1
0
0
0

+0×


0
0
1
0
0

 . (37)

The equality would still hold if we multiply both sides of the equation by any scalar β ∈ R,

0×


2
0
0
0
0

+β ×


3
2
0
0
0

= 3β ×


1
0
0
0
0

+2β ×


0
1
0
0
0

+0×


0
0
1
0
0

 . (38)

Again, moving everything to the left hand side of the equation, we have

0×


2
0
0
0
0

+β ×


3
2
0
0
0

+(−3β )×


1
0
0
0
0

+(−2β )×


0
1
0
0
0

+0×


0
0
1
0
0

= 0⃗. (39)

We have that any vector of the form x⃗ =


x1
x2
x3
x4
x5

=


−3β

0
−2β

β

0

=


−3
0
−2
1
0

β is in the nullspace of A. We know that

if any two vectors are in the nullspace, then their sum is also in the nullspace. Thus we can conclude that
the nullspace of A is

N(A) =




−2
1
0
0
0

α +


−3
0
−2
1
0

β

∣∣∣ α,β ∈ R

 . (40)

Notice that the dimension of the nullspace is 2 and the dimension of the range is 3 which add up to the
number of columns, 5, as expected.

8.5 Practice Problems
These practice problems are also available in an interactive form on the course website
(http://inst.eecs.berkeley.edu/ ee16a/sp19/hw-practice).
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1. Let v⃗1 and v⃗2 be two vectors in a set W . Suppose we know that v⃗1 + v⃗2 is not in W . Is W a subspace?

2. Performing Gaussian elimination on
[

1 −2 4 3
−1 2 1 2

]
gives

[
1 −2 0 −1
0 0 1 1

]
. Find a basis for

Col(A).

(a)
{[

1
0

]
,

[
−2
0

]}
(b)

{[
1
−1

]
,

[
−2
2

]}
(c)

{[
1
−1

]
,

[
4
1

]}
(d)

{[
1
−2

]
,

[
−1
2

]}
3. True or False: If an m×n matrix has pivots in every row, then Col(A) = Rm.

4. Suppose A is an m× n matrix. What is the largest possible dimension of its null space, and what is
the largest possible dimension of its column space?

(a) Null space: m, Column space: m

(b) Null space: n, Column space: n

(c) Null space: n, Column space: min(m,n)

(d) Null space: m, Column space: max(m,n)

5. Given the matrix A =


1 2 0 3
−1 2 0 1
1 −2 0 −1
3 5 0 8

, find the dimension of the column space.

6. True or false: A square matrix in Rn×n is invertible if and only its rank is equal to n.

7. True or False: If A is a square matrix, then rank(A) = rank(A2).
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