
EECS 16A Designing Information Devices and Systems I
Spring 2023 Lecture Notes Note 9

9.1 Page Rank: Eigenvalues and Eigenvectors in Action
Google’s Page Rank algorithm uses a web crawler to estimate the popularity of webpages. We assume
that the more popular a website, the more incoming links it has. We use the following setup to model the
problem: suppose we have a large population of web surfers scattered at random around the internet. At each
time step, all surfers randomly choose an outgoing link on their current page to arrive at a new webpage.
After a large number of time steps, we expect the number of viewers on each page to reflect that page’s
popularity.

It’s important to realize that this is a simplified model that leaves out certain characteristics of the real world:
for example, people do not click links at random and people often seek out entirely new pages rather than
clicking on outgoing links. Page Rank as it’s used in practice, while still a simplified model, has many more
intricacies than we cover here. However, even this first order approximation is a very powerful tool.

Let’s look at an internet consisting of four webpages:

1

2

3

4

How can we calculate the number of viewers on each page after infinite time steps? In this note, we will
introduce three important new concepts to help us do this calculation: Determinants, Eigenvalues, and
Eigenvectors.

Let’s say we started off with 6 people on each webpage. Then one time step ticks and everyone randomly
selects an outgoing link to visit. How many people do we expect to be on each webpage now?

Page 1: Page 3 only links to page 1, so all 6 people currently on 3 will move to 1. Page 4 links to pages 1
and 3, so on average about half the people on page 4 will go to page 1. There are no other incoming links,
so we expect page 1 to have about 6×1 + 6× 1

2 = 9 people in the next time step.

Page 2: Page 1 is the only page that links to page 2. We expect a third of people from page 1 to move to
page 2, so we expect page 2 to have 6× 1

3 = 2 people in the next time step.
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Page 3: We can arrive at page 3 from all the other pages. At page 1, the fraction of the people who move to
page 3 is 1

3 , at page 2 the fraction of the people who move to page 3 is 1
2 , and at page 4 the fraction of the

people who move to page 3 is 1
2 . Hence, we expect 6× 1

3 + 6× 1
2 + 6× 1

2 = 8 people to be on page 3 in the
next time step.

Page 4: We can arrive at page 4 from either page 1 or page 2. At page 1, the fraction of people who move to
page 4 is 1

3 ; at page 2, the fraction of people who move to page 4 is 1
2 . We expect 6× 1

3 + 6× 1
2 = 5 people

to be on page 4 in the next time step.

Notice that to find the number of people we expect to be on page i, we added up the number of people we
expected would move from every other page to page i. In general, if we have n pages, xi(k) is the number
of people on page i at time step k, and p(x,y) is the fraction of people that will jump from page x to page y,
then

xi(k+1) =
n

∑
j=1

x j(k) p( j, i)

If we want to compute the expected number of viewers at time k+ 1 for all pages simultaneously, we can
use matrix notation as we did with the pump and reservoir system we looked at earlier. Define x⃗(k) =[
x1(k) x2(k) . . . xn(k)

]T as the vector encoding the number of viewers on each page at time k. Then

x⃗(k+1) =


x1(k+1)
x2(k+1)

...
xn(k+1)

 =


p(1,1) p(2,1) . . . p(n,1)
p(1,2) p(2,2) . . . p(n,2)

...
...

...
...

p(1,n) p(2,n) . . . p(n,n)




x1(k)
x2(k)

...
xn(k)


We call the matrix of fractions P. Check that the entry xi(k+ 1) does in fact match the summation above.
For our specific example, the matrix equation looks like this:


0 0 1 1

2
1
3 0 0 0
1
3

1
2 0 1

2
1
3

1
2 0 0




6
6
6
6

 =


9
2
8
5


If we start with initial counts x⃗(0) and want to find the expected number of viewers on each page at time k,
we compute

x⃗(k) = Pk x⃗(0) =


0 0 1 1

2
1
3 0 0 0
1
3

1
2 0 1

2
1
3

1
2 0 0


k

x⃗(0)

Since we only care about the relative popularity of each webpage, we can think of x⃗(k) as fractions of viewers
on each page (instead of the total number of viewers). We assume the viewers are initially distributed equally
on all webpages, and we initialize x⃗(0) as

[1
4

1
4

1
4

1
4

]T . After running the simulation for many time steps,
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we hope x⃗(k) will reflect the popularity of the webpages. This system is only useful to us if the values of
x⃗(k) converge to some stable fractions, i.e. the fraction of people on each webpage does not change at every
timestep.

Once our fractions exactly match these “stable fractions”, running the simulation for another time step
should not change the values. This means that if the fractions converge, at some point we’ll reach fractions
x⃗∗ such that

x⃗∗ = Px⃗∗

9.2 Eigenvectors and Eigenvalues
In our Page Rank example, x⃗∗ is an example of an eigenvector of P. But eigenvectors have a more general
definition:

Definition 9.1 (Eigenvectors and Eigenvalues): Consider a square matrix A ∈Rn×n. An eigenvector of A
is a nonzero vector x⃗ ∈ Rn such that

Ax⃗ = λ x⃗

where λ is a scalar value, called the eigenvalue of x⃗.

How do we solve this equation for both x⃗ and λ , knowing only A? It seems we don’t have enough informa-
tion. We start by bringing everything over to one side:

Ax⃗ − λ x⃗ = 0⃗

We would like to factor out x⃗ on the left side, but currently the dimensions don’t agree. x⃗ is an n×1 vector,
while A is an n×n matrix. To fix this, we replace λ x⃗ with λ In x⃗, where In is the n×n identity matrix:

(A − λ In) x⃗ = 0⃗ (1)

Remember, in the definition of an eigenvector, we explicitly excluded the 0⃗ vector. We know at least one
element of x⃗ is nonzero, yet (A − λ In) x⃗ = 0⃗. To see what this means, let’s define the columns of A − λ In

to be the vectors v1 . . .vn and rewrite the product in terms of the columns:

 | | |
v⃗1 v⃗2 . . . v⃗n

| | |




x1
x2
...

xn

 =

 |
v⃗1
|

x1 +

 |
v⃗2
|

x2 + · · ·+

 |
v⃗n

|

xn =


0
0
...
0


From this formulation, we can see that some nonzero linear combination of the columns of A−λ In results in
0⃗. This means that the columns of this matrix must be linearly dependent. Now we can rephrase our problem:
For what values of λwill A−λ In have linearly dependent columns? To help us answer this question, we
introduce the determinant.
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Additional Resources For more on eigenvalues and eigenvectors, read Strang pages 288 - 291
or read Schuam’s pages 296-299.

9.3 Determinants
Every square matrix has a quantity associated with it known as the determinant. This quantity encodes many
important properties of the matrix, and it is also intimately connected to its eigenvalues.

For this class, we only need to know how to compute the determinant of a 2× 2 matrix by hand. This is
given by

det
([

a b
c d

])
= ad − bc

.

There is a beautiful recursive definition for determinants of general n×n matrices which is outside the scope
of this class, but you can read the Wikipedia article on determinants if you want to learn more about it.

Suppose we have a n× n square matrix A− λ In and a non-zero vector x ∈ Rn. Recall from the previous
section that the columns of A− λ In are linearly dependent. We will show that if a matrix’s columns are
linearly dependent, then its determinant is zero.

Let’s consider the geometric connection between the column vectors of a matrix and its determinant. For
simplicity, first consider a 3× 3 matrix. Let its column vectors be a1, a2 and a3. Then consider the paral-
lelepiped formed by these vectors: 1

We define the determinant of this matrix as the volume of this parallelepiped formed by its column vectors.
For a 2 × 2 matrix, its determinant is the area of the parallelogram generated by its 2 column vectors.

1Modified from image by Claudio Rocchini, https://en.wikipedia.org/wiki/Determinant
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Similarily the determinant of a 4× 4 matrix is the 4-dimensional volume formed by its 4 column vectors.
You can check the formula for the determinant of a 2×2 matrix by computing the area of the parallelogram
below using geometry and then comparing that to the value given by the determinant formula.

det
([

a1 a2
])

= det
([

4 5
3 12

])
= 48−3×5 = 33

So now back to our proof, so what happens to the determinant when the column vectors of the matrix
det(A− λ In) = 0 are linearly dependent? Remember from the previous notes, this means that either one
vector lies in the plane formed by the other two, or all three lie on the same line! In either case, the
parallelepiped will be “compressed” into a plane or line, with zero volume. Thus the determinant (volume
of the parallelepiped) has to be zero.

Additional Resources For more on determinants, read Strang pages 247 - 253 and pages 254 to
257, and try Problem Set 5.1.
In Schaum’s, read pages 264-265 and pages 265-266, and try Problems 8.1, 8.38, 8.39, 8.2, and
8.40 to 8.43.

9.4 Computing Eigenvalues with Determinants
Now we can go back to finding eigenvalues and eigenvectors. Recall that we are trying to solve the equation

(A − λ In) x⃗ = 0⃗

Since we are only interested in solutions where x⃗ ̸= 0⃗, we want to find values of λ such that (A − λ In) has
linearly dependent columns. We just learned that a matrix with linearly dependent columns has determinant
equal to zero:

(A − λ In) x⃗ = 0⃗ =⇒ det(A − λ In) = 0 (2)

Now, let’s use this to find the eigenvalues of a matrix. Consider the example 2×2 matrix
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A =

[
1 2
4 3

]

We now expand the expression above:

A − λ In =

[
1 2
4 3

]
−

[
λ 0
0 λ

]
=

[
1−λ 2

4 3−λ

]

We now take the determinant of this matrix and set it equal to 0:

(1−λ )(3−λ ) − 4×2 = 0

Expanding this expression, we get

λ
2 − 4λ − 5 = (λ +1)(λ −5) = 0

We find that there are two solutions to this equation, and therefore two eigenvalues: λ = −1, λ = 5. Each
eigenvalue will have its own corresponding eigenvector. To find these, we plug each value of λ into the
Equation 2 and solve for x⃗. Starting with λ = 5:

(A − 5I2) x⃗ =

[
−4 2
4 −2

] [
x1
x2

]
= 0⃗

We see that both of the rows provide redundant information: 4x1 − 2x2 = 0. The eigenvectors associated
with λ = 5 are all of the form

α

[
1
2

]
, α ∈ R

Next, we will find the eigenvector associated with λ =−1. We plug this value of λ into the Equation 2 and
solve:

(A + I2) x⃗ =

[
2 2
4 4

] [
x1
x2

]
= 0⃗

Both rows provide the information x1 = −x2. The eigenvectors associated with λ = −1 are of the form

α

[
1
−1

]
, α ∈ R

In summary, the matrix A =

[
1 2
4 3

]
has eigenvalues λ = 5,−1 with associated eigenvectors

[
1
2

]
,

[
1
−1

]
. We
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can check by multiplying the eignenvectors with A and seeing that they get scaled by their corresponding
eigenvalues.

[
1 2
4 3

][
1
2

]
=

[
5
10

]
= 5

[
1
2

]
[

1 2
4 3

][
1
−1

]
=

[
−1
1

]
=−

[
1
−1

]

Additional Resources For more on computing eigenvalues, read Strang pages 292 - 296. For
additional practice, try Problem Set 6.1.

9.5 Repeated and complex eigenvalues
Every 2×2 matrix has two eigenvalues, but they do not have to be real or unique!

Repeated Eigenvalues:

For a 2×2 matrix, it’s possible that the two eigenvalues that you end up with have the same value, leading
to a phenomenon called a Repeated Eigenvalues. This repeated eigenvalue can one or two associated eigen-
vectors (unlike a single, unrepeated eigenvalue, which will only have one associated eigenvector). If there
are two eigenvectors, they form an eigenspace, which is the space of all vectors v⃗ for which A⃗v = λ v⃗.

For example, the following matrix has a repeated eigenvalue of λ .

A =

[
λ 0
0 λ

]
The eigenspace of this matrix is all of R2 since for any vector v⃗ ∈ R2, A⃗v = λ v⃗.

Complex Eigenvalues:

Sometimes when we solve det(A − λ In) = 0, there will be no real solutions to λ . Consider the trans-
formation that rotates any vector by θ , about the origin:

R =

[
cosθ −sinθ

sinθ cosθ

]

There are certain specific cases when R has real eigenvalues: When θ = 0, the rotation matrix reduces to the
identity matrix, which does not change change vectors, and therefore has eigenvalue λ = 1. When θ = π ,
the rotation matrix reduces to the negative identity matrix, which changes the sign of vectors and therefore
has eigenvalue λ =−1. In both these cases, all vectors in R2 are eigenvectors, so R2 is the eigenspace.

However, when θ does not correspond to 0◦ or 180◦ rotation, there are no vectors that are scaled versions
of themselves after the transformation. This will results in complex eigenvalues. For example, let’s look at
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45◦ rotation:

R =
1√
2

[
1 −1
1 1

]
det(R−λ I) =

1
2
(1−λ )(1−λ )+

1
2

Setting this determinant equal to zero and solving yields the complex eigenvalues, λ = 1√
2
(1+ i) and λ =

1√
2
(1− i), which makes sense because there are no physical (real) eigenvectors for this transformation.

9.6 Eigenvectors corresponding to distinct eigenvalues are lin-
early independent.

Let’s explore how the eigenvalues of a 2×2 matrix behave in the most general case. For an arbitrary 2×2
matrix A, we know that its eigenvalues λ will satisfy the equation det(A−λ I) = 0. Letting

A =

[
a b
c d

]
,

where a, b, c, and d are real scalars, we find that

det(A−λ I) = det
([

a−λ b
c d −λ

])
= (a−λ )(d −λ )−bc = 0.

Rearranging, we obtain the quadratic equation

λ
2 − (a+d)λ +(ad −bc) = 0.

The polynomial on the left hand side of the above equation is known as the characteristic polynomial for
the matrix A.

Since the above quadratic equation has real coefficients, we know that there are three possible cases to
consider:

1. There are two, real, distinct eigenvalues λ1 and λ2 that satisfy the equation.

2. There is a single (repeated) eigenvalue of λ that satisfies the equation.

3. There are two, complex, distinct eigenvalues λ1 and λ2 that satisfy the equation.

We won’t spend too much time in this course studying the case of complex eigenvalues, so we won’t discuss
the third case further.

9.6.1 Case 1: Two distinct real eigenvalues

Let’s consider the case when we have two distinct, real eigenvalues λ1 and λ2 of our matrix A, such that for
any i ∈ {1,2}, det(A−λiI) = 0. Since det(A−λ1I) = 0, we know that A−λ1I has a nontrivial nullspace, so
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there exists a vector v⃗1 ̸= 0⃗ such that

(A−λ I)⃗v1 = 0⃗ =⇒ A⃗v1 = λ1⃗v1.

As discussed earlier, v⃗1 is an eigenvector of A, corresponding to the eigenvalue λ1. In a similar manner,
there will exist an eigenvector v⃗2 corresponding to the eigenvalue λ2, so A⃗v2 = λ2⃗v2.

We will now pose the following question: are v⃗1 and v⃗2 related in any way? As it turns out, we can show
that v⃗1 and v⃗2 are linearly independent, so we cannot write either vector as a linear combination of the other.

Theorem 9.1: Given two eigenvectors v⃗1 and v⃗2 corresponding to two different eigenvalues λ1 and λ2 of a
matrix A, it is always the case that v⃗1 and v⃗2 are linearly independent.

Proof. We will prove this claim by contradiction. Imagine that v⃗1 and v⃗2 were linearly dependent, so we
could express one of them (say v⃗1, without loss of generality) as a scalar multiple of the other. Expressed
algebraically, we could write v⃗1 = α v⃗2 for a suitable scalar α .

Now, since v⃗1 and v⃗2 are eigenvectors with known eigenvalues, we know by definition that

A⃗v1 = λ1⃗v1

A⃗v2 = λ2⃗v2,

where λ1 ̸= λ2. Substituting in our expression for v⃗1 into the first of the above equations, we find that

A(α v⃗2) = λ1(α v⃗2)

=⇒ α(A⃗v2 −λ1⃗v2) = 0⃗.

Since eigenvectors are, by definition, nonzero, we know that v⃗1 = α v⃗2 ̸= 0, so α ̸= 0. Thus, we can divide
the above equation by α and rearrange to obtain

A⃗v2 = λ1⃗v2.

But since v⃗2 is an eigenvector with eigenvalue λ2, we know that

A⃗v2 = λ2⃗v2.

Equating the two right hand sides and rearranging, we obtain

λ1⃗v2 = λ2⃗v2 =⇒ (λ1 −λ2)⃗v2 = 0⃗.

Finally, since we said that the eigenvalues were distinct, so λ1 ̸= λ2, it is clear that λ1 −λ2 ̸= 0. Dividing by
this nonzero scalar, we find that

v⃗2 = 0⃗.

But v⃗2, being an eigenvector, must be nonzero, so this is a contradiction! Our initial hypothesis, that v⃗1 and v⃗2
were linearly dependent, must therefore be wrong, so the two eigenvectors are in fact linearly independent!
This completes the proof.
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9.6.2 Linear independence of eigenvectors with distinct eigenvalues

More generally, it turns out that all eigenvectors with different eigenvalues are linearly independent! More
formally, we claim:

Theorem 9.2: Let v⃗1, v⃗2, . . . , v⃗m be eigenvectors of an n×n matrix with distinct eigenvalues. It is the case
that all the v⃗i are linearly independent from one another. The proof of this theorem is out of scope, but is
presented below anyway just for reference for those who are interested.

Proof. This proof will be done by induction over m. To establish some notation, let our n×n matrix be A,
and let our distinct eigenvalues be λi, so A⃗vi = λi⃗vi for all integer 1 ≤ i ≤ m.

Now, assume for the sake of induction that the first k < m of our eigenvectors (i.e. v⃗1, . . . , v⃗k) are linearly
independent. We will aim to show that the first k+1 eigenvectors are also linearly independent. To do so,
we will do a proof by contradiction. Imagine, for the sake of contradiction, that the first k+1 eigenvectors
are in fact linearly dependent, so there exist coefficients α1, . . . ,αk+1 (not all of which are zero) such that

α1⃗v1 +α2⃗v2 + . . .+αk⃗vk +αk+1⃗vk+1 = 0⃗.

If αk+1 = 0, then the first k eigenvectors would be linearly dependent, which we know from our inductive
hypothesis is not the case. Thus, αk+1 ̸= 0, so we can rearrange the above equation to obtain

v⃗k+1 =− α1

αk+1
v⃗1 −− α2

αk+1
v⃗2 − . . .− αk

αk+1
v⃗k.

For convenience, let βi =−αi/αk+1, so

v⃗k+1 = β1⃗v1 +β2⃗v2 + . . .+βk⃗vk.

Notice that, since at least one of the αi is nonzero, at least one of the βi is also nonzero.

Now, since v⃗k+1 is an eigenvector, we have that

A⃗vk+1 = λk+1⃗vk+1

=⇒ A(β1⃗v1 +β2⃗v2 + . . .+βk⃗vk) = λk+1(β1⃗v1 +β2⃗v2 + . . .+βk⃗vk)

=⇒ β1(A⃗v1)+β2(A⃗v2)+ . . .+βk(A⃗vk) = β1λk+1⃗v1 +β2λk+1⃗v2 + . . .+βkλk+1⃗vk.

But since v⃗1 through v⃗k are also eigenvectors where A⃗vi = λi⃗vi, we can substitute to obtain

β1λ1⃗v1 +β2λ2⃗v2 + . . .+βkλk⃗vk = β1λk+1⃗v1 +β2λk+1⃗v2 + . . .+βkλk+1⃗vk.

Rearranging to pull all the terms on one side, we find that

β1(λ1 −λk+1)⃗v1 +β2(λ2 −λk+1)⃗v2 + . . .+βk(λk −λk+1)⃗vk = 0⃗.

For convenience, let
γi = βi(λi −λk+1),

so
γ1⃗v1 + γ2⃗v2 + . . .+ γk⃗vk = 0⃗.
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Since all the eigenvalues λi are distinct, all the λi − λk+1 ̸= 0 terms in the above equation are nonzero.
Since we showed earlier that at least one of the βi is nonzero, it is clear that at least one of the γi is also
nonzero. Thus, we have produced a nontrivial linear combination of the first k eigenvectors that equals zero,
so the first k eigenvectors are linearly dependent. But this contradicts our inductive hypothesis, so our initial
assumption (that the first k+1 eigenvectors were linearly dependent) must be false.

Thus, we have shown that, if at least the first k < m eigenvectors are linearly independent, that the first k+1
eigenvectors will also be linearly independent. This will be our induction step.

Clearly, the set containing just the first eigenvector will be linearly independent, since all eigenvectors
(including the first) are nonzero. Thus, by induction using the above induction step, we can show that the
first m eigenvectors will all be linearly independent, which completes our proof!

9.6.3 Case 2: A repeated real eigenvalue

In the first case, when we have a single eigenvalue, we know that the corresponding eigenspace may be
either one- or two-dimensional. For instance, for

A =

[
1 0
0 1

]
,

we can see that the single eigenvalue is λ = 1, and the eigenspace is the two dimensional space R2 =

span
{[

1
0

]
,

[
0
1

]}
.

However, for matrices such as

A =

[
0 1
0 0

]
,

we see that the characteristic polynomial

det(A−λ I) = det
([

−λ 1
0 −λ

])
= λ

2

yields the single, repeated eigenvalue λ = 0. However, computing the associated eigenspace Null(A−0I) =
Null(A) yields the one-dimensional eigenspace

span
{[

1
0

]}
even though the eigenvalue is repeated. In such a case, when the dimension of an eigenspace is less than the
number of times the eigenvalue is repeated (called the multiplicity of the eigenvalue), we say that the matrix
is defective. The concept of defective matrices is out of scope for the course, but will be discussed more in
EECS 16B. That being said, it is often useful to be aware of their existence, since they can often serve as
easy counter-examples if you’re not sure if a theorem is true.
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9.7 Examples
In Section 9.4, we saw an example of how to compute the eigenvalues and eigenvectors of a matrix. Here,
we’ll look at another example where we do the opposite – finding a matrix given it’s eigenvalues and eigen-
vectors. Finally, we’ll go back to our page rank example and rank the popularity of webpages by finding the
appropriate eigenvector.

Example 9.1 (Finding a matrix from its eigenvalues and eigenvectors): Now we turn to the case where
we try to derive the matrix from the provided vectors. This is essentially reverse engineering the previous
problem and reworking the derivation of the eigenvalues.

We would like to solve the problem: what is the matrix A that reflects any 2D vectors over the vector
[

2
1

]
?

Below is a graphical representation of that vector:

x axis

y axis

Remember that an eigenvector of a matrix is any vector that results in a scaled version of itself after be-
ing transformed by the matrix. Can you think of any eigenvectors of this reflection transformation? First
we observe that anything lying on the line of reflection will be unchanged, in other words, scaled by one.
Therefore, we can write the eigenvector, eigenvalue pair:

λ1 = 1

v⃗1 = α

[
2
1

]

In addition, any vector lying perpendicular to the line of reflection will be transformed to point in the
opposite direction, in other words, scaled by -1. This results in another eigenvector, eigenvalue pair:

λ2 =−1

v⃗2 = α

[
−1
2

]

Now we can use our definition, A⃗v = λ v⃗, to set up a system of equations so we can solve for matrix A:

EECS 16A, Spring 2023, Note 9 12



x axis

y axis

[
a1 a2
a3 a4

][
2
1

]
=

[
2
1

]
[

a1 a2
a3 a4

][
−1
2

]
=

[
1
−2

]

We rearrange these linear equations as follows. (To see these are equivalent, try writing out all four equations
in terms of a1 . . .a4.) 

2 1 0 0
0 0 2 1
−1 2 0 0
0 0 −1 2




a1
a2
a3
a4

=


2
1
1
−2


Finally, we solve the system of equations with Gaussian Elimination to get our transformation matrix, A.

A =

[
.6 .8
.8 −.6

]

Example 9.2 (Page Rank): Let’s go back to our page rank example from the beginning of this note. Recall
that we have four webpages, with links between them represented by the diagram below:

1

2

3

4

We can write the tranformation matrix P that tells us how the number of people on each webpage changes
over time:
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x⃗(t +1) = Px⃗(t) =


0 0 1 1

2
1
3 0 0 0
1
3

1
2 0 1

2
1
3

1
2 0 0

 x⃗(t)

where x⃗(t) is a vector describing the fraction of people on each page at time t.

We are interested in the steady state vector, x⃗∗ such that

x⃗∗ = Px⃗∗.

Looking back at our definition of eigenvalues and eigenvectors, we can see that x⃗∗ is the eigenvector as-
sociated with eigenvalue λ = 1. In this specific case of finding a steady state vector, we already know the
eigenvalue, so proceed to finding the associated eigenvector. (More generally, we would use the determinant
to find the eigenvalues first).

From Equation 1, we can write that our steady state vector satisfies

(P−λ I)x⃗∗ = 0⃗

where λ = 1. 


0 0 1 1
2

1
3 0 0 0
1
3

1
2 0 1

2
1
3

1
2 0 0

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 x⃗∗ = 0⃗


−1 0 1 1

2
1
3 −1 0 0
1
3

1
2 −1 1

2
1
3

1
2 0 −1

 x⃗∗ = 0⃗

We solve for x⃗∗ by finding the null space of the above matrix. After performing Gaussian elimination on the
matrix above, we get the following row equivalent system of equations:

1 0 0 −2
0 1 0 −2

3
0 0 1 −3

2
0 0 0 0

 x⃗∗ = 0⃗

Remember that each row represents an equation:

x1 −2x4 = 0

x2 −
2
3

x4 = 0

x3 −
3
2

x4 = 0
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We can represent this set of solutions as a vector where x4 is a free variable, x4 ∈ R.

x⃗∗ =


x1
x2
x3
x4

=


2x4
2
3 x4
3
2 x4
x4


Since we want, the steady state vector to represent the fraction of people on each page, we can choose x4 so
that the total number of people sums to 1.

x⃗∗ =
1
31


12
4
9
6


From our steady state solution, we conclude that webpage 1 is most popular, then webpages 3, 4, and 2.

9.8 Steady States
We know that a steady state x⃗∗ of a transformation matrix A is defined to be such that

A⃗x∗ = x⃗∗.

In other words, it is an element of the eigenspace of A corresponding to the eigenvalue λ = 1. The above
equation tells us that if we start at a steady state, then we will remain unaffected by the transformation matrix
over time.

However, what happens if we don’t start at a steady state? Can we say anything about what happens to our
state as we keep applying the transformation matrix?

9.8.1 Starting at eigenvectors

We will first look at a simpler problem - what happens if our initial state is an eigenvector v⃗ of A, but with a
real eigenvalue λ that may not equal 1? In other words, A⃗v = λ v⃗, but it is possible that λ v⃗ ̸= v⃗. Let’s try to
see what happens over time, as we keep applying A to our initial state x⃗[0] = v⃗. For the first few timesteps,
we see that

x⃗[0] = v⃗

=⇒ x⃗[1] = A⃗x[0] = A⃗v = λ v⃗

=⇒ x⃗[2] = A⃗x[1] = A(λ v⃗) = λ
2⃗v

=⇒ x⃗[3] = A⃗x[2] = A(λ 2⃗v) = λ
3⃗v

...
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We can see, therefore, that after t timesteps, our state will become

x⃗[t] = λ
t⃗v.

But how does this expression behave as time continues, and n → ∞? We can see that there are a number of
cases to consider:

• If λ > 1, then it can be seen that λ ,λ 2,λ 3, . . . will keep increasing to +∞, so our state x⃗[t] will keep
growing along the direction of v⃗ towards infinity.

• If λ = 1, we’re just at the steady state, so x⃗[t] = v⃗ as t → ∞.

• If 0 < λ < 1, then λ ,λ 2,λ 3, . . . will decrease towards zero from above, so our state x⃗[t] will keep
scaling down and approach 0⃗ in the limit.

• If λ = 0, then x⃗[1] = 0⃗v = 0⃗, so our state will immediately drop to 0⃗ from the first timestep onwards.

• If λ < 0, then behavior similar to the above will occur based on the value of |λ |, except that the sign
of the state will keep flipping at each step. For instance, if λ < 0 but |λ |> 1 (in other words, λ <−1),
then the magnitude of the state will tend towards infinity but will keep flipping its sign each time step.

9.8.2 General initial states
Still, we’re not done! All we’ve considered so far are steady states of the form x⃗[0] = v⃗ where v⃗ is an
eigenvector of the transformation matrix A. What if we have an arbitrary initial state, which in general may
not be an eigenvector of A?

To deal with this issue, we will make our lives a little easier by considering only matrices whose eigenvectors
form a basis (i.e.span all of the state space) — in other words, if A is n×n, then any initial state x⃗[0] can be
written as a linear combination

x⃗[0] = α1⃗v1 +α2⃗v2 + . . .+αn⃗vn,

where v⃗1 through v⃗n are linearly independent eigenvectors with eigenvalues λ1 through λn, and the αi are
real scalar coefficients. The general case, when this property is not guaranteed to hold, will be discussed in
EECS 16B.

Now, we have previously seen that
x⃗[t] = At⃗x[0].

We will substitute our linear combination for x⃗[0] in terms of the eigenvectors into the above equation, to
obtain

x⃗[t] = At(α1⃗v1 +α2⃗v2 + . . .+αn⃗vn)

= α1(At⃗v1)+α2(At⃗v2)+ . . .+αn(At⃗vn)

= α1(λ
t
1⃗v1)+α2(λ

t
2⃗v2)+ . . .+αn(λ

t
n⃗vn).

Thus, to determine the behavior of an (almost) arbitrary linear system with an arbitrary initial state, all we
have to do is write the initial state as a linear combination of the eigenvectors, see how each term of the
linear combination behaves as t → ∞, and plug back into the linear combination to determine how the initial
state evolves as t → ∞.
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We have expressed x⃗[t] as a linear combination of the λ t
i v⃗i, which each represent what happens to each

eigenvector after repeated applications of A. And, from the previous section, we know how this behavior
depends on the value of λi!

9.8.3 Computing linear combinations

In the above description we wrote out x⃗[0] as a linear combination of the eigenvectors. In general, how do
we write an arbitrary initial state as a linear combination of n linearly independent eigenvectors {⃗vi}? We’d
like to solve for the coefficients {αi} in the equation

x⃗[0] = α1⃗v1 +α2⃗v2 + . . .+αn⃗vn.

Rewriting it as a matrix multiplication using the linear combination interpretation and stacking the unknown
αi into a vector, we obtain the linear system

 | | |
v⃗1 v⃗2 · · · v⃗n

| | |




α1
α2
...

αn

= x⃗[0],

which we can solve using Gaussian elimination. Alternatively, since the matrix on the left is n× n with n
linearly independent columns, we can pre-multiply by its inverse to express our solution vector as

α1
α2
...

αn

=

 | | |
v⃗1 v⃗2 · · · v⃗n

| | |

−1

x⃗[0].

We will revisit this in EECS16B when we talk about the diagonalization.

9.8.4 Criteria for convergence

Now, we have all the tools needed to determine what happens to an initial state after repeated application of
a transformation matrix.

Consider an arbitrary initial state x⃗[0]. We know that

x⃗[t] = α1(λ
t
1⃗v1)+α2(λ

t
2⃗v2)+ . . .+αn(λ

t
n⃗vn).

Essentially, we want to know if x⃗[t] will ultimately converge to some fixed value, no matter what the {αi}
are.

Observe that if a single λi is such that |λi| > 1, that λ t
i v⃗i → ∞ in the limit. Thus, our state x⃗[t] could

potentially go to infinity in the limit. Furthermore, observe that if a single λi = −1, that λ t
i v⃗i will oscillate

back and forth in the limit, neither decreasing towards zero or growing to infinity. Thus, our state x⃗[t] could
potentially oscillate indefinitely, and so fail to converge to a fixed value.

However, if all the λi are such that −1 < λi ≤ 1, then each term in the linear combination will either go to
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zero (if the corresponding λi ̸= 1) or stay the same (if λi = 1), meaning that the overall state x⃗[t] will always
converge to a fixed value, no matter what the initial coefficients are.

Consequently, we have come up with a condition that is sufficient to ensure that any initial state of a trans-
formation matrix will reach a steady state in the limit. But to compute what exactly this steady state is, or
to determine if a steady state is reached for a particular initial state even if it will not always be reached in
the general case, we need to go back to our technique of writing our initial state as a linear combination of
eigenvectors and computing the limit of each term in the linear combination.

9.9 Practice Problems
These practice problems are also available in an interactive form on the course website.

1. What are the eigenvalues of the matrix
[

3 2
4 1

]
?

2. What are the eigenvectors of the matrix
[

3 2
4 1

]
?

3. True or False: If an n×n matrix A is not invertible, then it has an eigenvalue λ = 0.

4. True or False: If an invertible matrix A has an eigenvalue λ , then A−1 has the eigenvalue 1
λ

.

(a) Always true.

(b) False.

(c) True only if λ ̸= 0.

5. Two students find two different eigenvectors associated with the same eigenvalue of a matrix,

 2
−1
4


and

 1
−1

2
2

. Student One insists that the other must have made an error because every eigenvalue is

associated with a unique eigenvector. Student Two insists that they are both valid answers. Who is
right, Student One or Student Two?

6. True or False: If for some matrix A, Ax⃗1 = λ1x⃗1 and Ax⃗1 = λ2x⃗1, then λ1 = λ2.

7. True or False: A matrix with only real entries can have complex eigenvalues.

8. True or False: If AT has an eigenvalue λ , then A also has the eigenvalue λ .

9. True or False: A diagonal n×n matrix has n distinct eigenvalues.

10. For a square non-invertible n× n matrix A, what is the maximum and minimum number of distinct
eigenvalues it can have?

(a) Max: 1, Min: 0

(b) Max: n, Min: 1
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(c) Max: n, Min: n−1

(d) Max: n−1, Min: 0

(e) Max: n−1, Min: 1

11. Find the steady state, if it exists, of the following system assuming that the state vector is x⃗[t] =xGoogle[t]
xYahoo[t]
xBing[t]

 and that we start off with x⃗[0] =

100
100
100

.

Google

Bing Yahoo

1
2

1
3

1
6

1
2 1

2

2
3

1
3

12. What is the matrix A that reflects any vector in R2 about the line through the origin in the direction of[
3
2

]
?
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