

WELCOME TO THE MATRIX!!!!!

EECS 16A Lecture 0B

Tomography and Linear Equations

Last lecture: Intro to circuits and linear algebra

Module 1: Imaging

Different types of images

Seeing inside bodies: sans surgery...

All of these benefitted from the math/hardware design techniques you will learn in this class!

Tomography

'tomo' – slice 'graphy' – to write

Assume it is not desirable to slice open my leg. How does tomography 'see' inside?

Xray takes a 'projection'

Xray takes a 'projection'

Computed Tomography = \underline{many} Xray projections

http://www.youtube.com/watch?v=4gklQHM19aY&feature=related

Tomography reconstructs images from projections

Sagittal Slices

What is a projection?

Sum of values along a line.

Tomography reconstructs images from projections

Tomography: 2D cross-section from 1D projections

Tomography: Building a model

Tomography: What if there's only one pixel?

Tomography: Projections are linear sums of pixels

$$y_1 = x_1 + x_2$$

$$y_2 = x_3 + x_4$$

2 equation 4 unknowns!

Tomography: Projections from more angles helps

$$y_1 = x_1 + x_2$$

 $y_2 = x_3 + x_4$
 $y_3 = x_1 + x_3$
 $y_4 = x_2 + x_4$

Tomography: Not all equations are useful

$$y_1 = x_1 + x_2$$

$$y_2 = x_3 + x_4$$

$$y_3 = x_1 + x_3$$

$$y_4 = x_2 + x_4$$

$$y_4 = x_2 + x_4$$

$$y_4 = x_1 + x_2 + x_3 + x_4$$

$$y_1 + y_2 = x_1 + x_2 + x_3 + x_4$$

This means
$$y_4$$
 does not provide new info; $y_4 = (y_1 + y_2) - y_3 = (x_2 + x_4)$

How can we take more measurements?

$$y_{1} = x_{1} + x_{2}$$

$$y_{2} = x_{3} + x_{4}$$

$$y_{3} = x_{1} + x_{3}$$

$$y_{4} = x_{2} + x_{4}$$

$$y_{5} \approx \sqrt{2}x_{1} + \sqrt{2}x_{4}$$

Now can we solve it?

Now we can solve for the pixel values!

All our measurements were (modeled as) and and a deled as)

This is called a system of linear equations

What does that mean?

Each variable (x) is multiplied by a scalar

$$y_1 = x_1 + x_2$$

$$y_2 = x_3 + x_4$$

$$y_3 = x_1 + x_3$$

$$y_4 = x_2 + x_4$$

$$y_5 \approx \sqrt{2}x_1 + \sqrt{2}x_4$$

Linear Algebra is what we need to solve it!

What is linear algebra?

- The study of linear functions and linear equations, typically using vectors and matrices
- Linearity is not always applicable, but can be a good first-order approximation
- There exist good fast algorithms to solve these problems

We can test for linearity

f is linear if:
$$x_1 \longrightarrow f$$
 $y \neq f(x_1 \neq x_2)$

is equivalent to:
$$x_1 \longrightarrow f$$

$$x_2 \longrightarrow f$$

$$y = f(x_1) + f(x_2)$$

Linear Equations: A mathematical definition

Claim: linear functions can always be expressed as: $f(x_1, x_2, \dots, x_N) = c_1 x_1 + c_2 x_2 + \dots + c_N x_N$

Side Note (added after lecture)

1.4.3 Affine Functions

What about functions like

$$f_3(x) = 2x + 1, \quad x \in \mathbb{R}$$
?

Plotting this function, we see that it is a line. But it doesn't seem to fit into the form f(x) = cx, so is it linear? A simple check, if we're ever unsure about the behavior of a function, is to plug in some simple input values

and see how the output behaves. Let's do that here, for x = 1 and x = 2. We see that

$$f_3(1) = 3$$
 and $f_3(2) = 5$,

so doubling the input value from 1 to 2 changes the output by a factor of 5/3. Thus, this function is not linear, *even though* it describes the equation of a line. This motivates the following definition: A function $g: \mathbb{R}^n \to \mathbb{R}$ is said to be an **affine function** if it can be written in the form

$$g(x_1,\ldots,x_n)=f(x_1,\ldots,x_n)+c_0$$
 for all $x_1\in\mathbb{R},\ldots,x_n\in\mathbb{R},$

for some linear function $f: \mathbb{R}^n \to \mathbb{R}$ and constant term $c_0 \in \mathbb{R}$. By applying Theorem 1.1, we conclude that any affine function can be written as

$$g(x_1,...,x_n) = c_0 + c_1x_1 + c_2x_2 + \cdots + c_nx_n.$$

Notice that the definition of affine functions includes all linear functions (by setting the scalar constant to 0), so every linear function is also affine, though not vice-versa. Nevertheless, a system of equations involving all affine functions is still a system of linear equations. (why?)

These definitions mean that while all functions describing a line can be shown to be affine, not all of them are linear. This has the unfortunate consequence that, in informal conversation, *affine* functions may be called *linear*, since both describe a line. This usage, though common, is **wrong**, as we saw with the example of f_3 .

Claim: linear functions can always be expressed as: $f(x_1, x_2, \dots, x_N) = c_1 x_1 + c_2 x_2 + \dots + c_N x_N$

Proof for \mathbb{R}^2 : $f(x_1, x_2)$: $\mathbb{R}^2 \Rightarrow \mathbb{R}$ is linear

Need to prove: $f(x_1, x_2) = c_1 x_1 + c_2 x_2$

Need to prove:
$$f(x_1, x_2) = c_1x_1 + c_2x_2$$

Rewrite $x_1 = 1$ $x_1 + 0$ $x_2 \rightarrow x_1 = x_1y_1 + x_2z_2$

of all vars $x_2 = 0$ $x_1 + 1$ $x_2 \rightarrow x_2 = x_1y_2 + x_2z_2$

in coeffs.

$$f(x_1, y_1) = f(x_1, y_2) + x_2z_2$$

$$= x_1 f(y_1, y_2) + x_2 f(z_{11}, z_{22})$$

Imaging in general

Imaging System

(electronics, control, computing, algorithms, visualization...)

Many pixel imaging

Shanghai skyline. 272 Gigapixels stitched from 12,000 pictures, by Alfred Zhao http://www.gigapan.com/gigapans/66626

Stained Human Blood Cells 26k x 22k pixels

Single-pixel imaging

Pictures taken with ONE PIXEL!

Barniauk et al., Rice University.

Imaging Lab #1 Setup

Single-pixel imaging

Single-pixel imaging

Single-pixel camera

