EECS 16A

Spring 2023 - Profs. Muller \& Waller Lecture 11A - Op Amp Circuit Analysis

Toolbox

KVL: Voltage drops around a loop sum to 0
KCL: All currents coming out of a node sum to O

C| C |
| :--- |\(\quad \begin{aligned} \& Q=C V

\& I=C \frac{d V}{d t}

\& C=\frac{\epsilon A}{d}\end{aligned}\)
$V=I R$
$P=I V=\frac{\rho L}{A} \quad R_{1} \| R_{2}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}, ~$
$* V_{\text {source }}$ (off) \rightarrow short
$\mathrm{I}_{\text {source }}($ off $) \rightarrow$ open
Thevenin Equivalent Circuit

Norton Equivalent Circuit

Measure V with open $\mathrm{R}_{\mathrm{Th}}=\mathrm{V}_{\mathrm{Th}} / \mathrm{I}_{\mathrm{N}}$ Measure I with short

Capacitors in Series

$\mathrm{C}_{1} \stackrel{+}{\square} \rightarrow \frac{1}{\mathrm{~T}} C_{e q}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$

Capacitors in Parallel
$\mathrm{c}_{1} \xlongequal{\square} \quad \mathrm{c}_{2} \xlongequal{\square} \rightarrow \stackrel{1}{\mathrm{~T}} C_{e q}=C_{1}+C_{2}$

Recap: Op Amps

$$
\quad-5 V V_{S S} \quad \mid=
$$

Recap: Need to Isolate DAC and Speaker!

$\begin{array}{cc}\text { Recap: An Op Amp with Negative Feedback! } \\ * & V_{D D} \text { non-inverting amplifier controls the gain }\end{array} \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A}{1+A f}$

Need to Gain and Isolation

$$
v_{\text {in }} \|_{t}^{V_{\text {out }}} v_{\text {out }}=\left(\frac{R_{1}}{R_{2}}+1\right) v_{\text {in }}
$$ $\bar{I}_{0} R_{2}$

Amplifier, Non-inverting Gain $=3=\frac{2 k}{k k}+1=3!$

* attenuation
gain <1
Why does this work? tamplifies
Why is 8Ω not attenuating?

The Golden Rules of (Ideal) Op Amps \#1

Inputs are open circuits

$$
{ }^{*} \mathrm{R}_{\mathrm{in}}=\infty
$$

$$
\# 1: I_{+}=I_{-}=0
$$

The Golden Rules of (Ideal) Op Amps \#2

(applies to negative feedback)

水The gain of an ideal op amp is $A=\infty$

$$
\begin{aligned}
A\left(u_{+}-u_{-}\right) & =U_{\text {out }} \\
\left(u_{+}-u_{-}\right) & =\frac{U_{\text {out }}}{A} \infty \Rightarrow 0 \\
\Rightarrow\left(u_{+}-u_{-}\right) & =0
\end{aligned}
$$

$$
\text { \#2: } u_{+}=u_{-}
$$

Only in negative feedback and $A=\infty$

An Extra Attribute of (Ideal) Op Amps Golden roles

(1) $A=\infty$
(2) $R_{\text {out }}=0 \Omega$

Useful Configurations

Check for Negative Feedback How do we check?

Step 1: Turn off all independent sources

- Voltage source becomes wire; Current source becomes open

Step 2: Check how the feedback loop responds to a change in the ouput

- Negative feedback: Increase output, loop tries to decrease it
- Positive feedback: Increase output, loop tries to increase it further

Example 1: Inverting Amplifier

\#1: $\quad I_{+}=I_{-}=0$
\#2: $u_{+}=u_{-}$
Only in negative
feedback and $A=\infty$
$\checkmark A=\infty$
\checkmark Rout $=0$

Example 1: Inverting Amplifier

$$
K C L: I_{1}=I_{2}+I^{\prime}
$$

(1) $I_{1}=I_{2}$

Ohm's Law:

$$
\Rightarrow \# 1: \quad I_{+}=I_{-}=0
$$

\rightarrow \#2: $u_{+}=u_{-}$
Only in negative feedback and $A=\infty$

$$
v_{\text {out }}=\alpha_{v_{S}}
$$

$$
A=\infty
$$

$$
\frac{v_{\text {out }}}{v_{\text {s }}}=\alpha[v / v] \quad R_{\text {out }}=0
$$

$$
\frac{v_{s}}{R_{1}}=\frac{-v_{\text {out }}}{R_{2}}
$$

$$
V_{\text {out }}=-\frac{R_{2}}{R_{1}} \cdot V_{s}
$$

$$
\frac{v_{o u t}}{v_{s}}=\frac{-R_{2}}{R_{1}}{ }^{*}
$$

Example 2: Trans-resistance Amplifier

\#1: $I_{+}=I_{-}=0$
\#2: $u_{+}=u_{-}$ Only in negative feedback and $A=\infty$

Example 2: Trans-resistance Amplifier

"\#2: $u_{+}=u_{-}$
Only in $\overline{\text { negative }}$ feedback and $A=\infty$

KCL: $I_{\text {in }}=I_{2}+I_{+}^{r_{7}^{0}}$
(1) $I_{\text {in }}=I_{2}$

Ohm's Law: $\Rightarrow \frac{O V-V_{\text {out }}}{R_{2}}=I_{2}$
$V_{\text {out }}=-R_{2} I_{\text {in }}$
$\frac{v_{\text {out }}}{I_{\text {in }}}=-R_{2}$

Example 3: Non-Inverting Amplifier

\#1: $I_{+}=I_{-}=0$
\#2: $u_{+}=u_{-}$ Only in negative feedback and $A=\infty$

Example 3: Non-Inverting Amplifier?
\#1: $\quad I_{+}=I_{-}=0$

$v_{f}=-v_{\text {in }}$

Need to Gain and Isolation

Summary of Useful Configurations

Inverting Amplifier

Non-inverting Amplifier

$$
v_{\text {out }}=\left(1+\frac{R_{1}}{R_{2}}\right) \cdot v_{\text {in }}
$$

Trans-resistance Amplifier

$$
v_{\text {out }}=-R_{2} \cdot I_{\text {in }}
$$

