EECS 16A

Spring 2023 - Profs. Muller & Waller Lecture 11A – Op Amp Circuit Analysis

GOLDEN RULES

Toolbox

Recap: Need to Isolate DAC and Speaker!

Need to Gain and Isolation

The Golden Rules of (Ideal) Op Amps #1 🗸

Inputs are open circuits

#1:
$$I_+ = I_- = 0$$

The Golden Rules of (Ideal) Op Amps #2

(applies to negative feedback)

 \checkmark The gain of an ideal op amp is A = ∞ \checkmark

Useful Configurations

• Voltage source becomes wire; Current source becomes open

Step 2: Check how the feedback loop responds to a change in the ouput

- Negative feedback: Increase output, loop tries to decrease it
- Positive feedback: Increase output, loop tries to increase it further

Example 1: Inverting Amplifier

#1: $I_+ = I_- = 0$ #2: $u_+ = u_-$ Only in negative feedback and $A = \infty$

 $A = \infty$

Example 1: Inverting Amplifier

KCL: $I_1 = I_2 + J^{n^0}$ $S D T_1 = I_2$ Ohm's Law: $V_S = OV = T_1$

NS = I

OV-Vout

Looking for:

Vout = XNS

 $\Rightarrow #1: I_{+} = I_{-} = 0$ $\Rightarrow #2: u_{+} = u_{-}$ Only in negative feedback and A= ∞

A=2

 $-9 \frac{1}{R_1} = \frac{-9}{R_2}$

Nout

 $v_{out} = -\frac{k_2}{R} \cdot v_s$

 $\frac{v_{out}}{v_5} = \chi \left[\frac{v_{v}}{v_1} \right] \quad \text{Rout} = 0$

Example 2: Trans-resistance Amplifier

#1: $I_{+} = I_{-} = 0$ #2: $u_{+} = u_{-}$ Only in negative feedback and $A = \infty$

Example 2: Trans-resistance Amplifier

 \checkmark #1: $I_+ = I_- = 0$

 $\Rightarrow #2: \quad u_{+} = u_{-}$ Only in negative feedback and A= ∞

Nout = $\sqrt{\left(\frac{V}{A}\right)} = \left[\frac{R^2}{2}\right] \in resistance$

 $\frac{-v_{out}}{R_2} = T_2 = T_1 n$

Vout = -R2IIn

Vout = -RZ

Example 3: Non-Inverting Amplifier

#1: $I_+ = I_- = 0$ #2: $u_+ = u_-$ Only in negative feedback and $A = \infty$

Example 3: Non-Inverting Amplifier

 $\sqrt{#1}: I_+ = I_- = 0$ \implies #2: $u_+ = u_-$ V=Vin 1+=0 Want Vout = XVin Only in negative Nouf feedback and $A = \infty$ or vout = X v_{in} K2 = -217 Vout. RITRZ V_ =- $> R_2$ $-1 \cdot v_f$ v_f mulcsion $v_{out} = -\frac{R_2 + k}{2}$ Voltage divider $+\frac{R_{1}}{R_{2}}$ $v_{f} = -v_{in}$ Vout Vin = $= v_f = -v_in$ Nout . R2 $R, +R_2$ Jr = [. 25 = Vin $v_{f} = -v_{in}$

Need to Gain and Isolation

Summary of Useful Configurations

Inverting Amplifier

Non-inverting Amplifier

Trans-resistance Amplifier

 $v_{out} = -\frac{R_2}{R_1} \cdot v_{in}$

 $v_{out} = (1 + \frac{R_1}{R_2}) \cdot v_{in}$

 $v_{out} = -R_2 \cdot I_{in}$