EECS 16A

Spring 2023 Profs. Muller & Waller

Lecture 11B Circuit Design Examples

Toolbox

Recap: Op Amps

Golden Rules #1: $I_+ = I_- = 0$ #2: $u_+ = u_-$ Only in negative feedback and $A = \infty$

Print me!

Common Prefixes used with SI Units			
Prefix	Symbol	Meaning	Order of Magnitude
giga-	G	1 000 000 000	10 ⁹
mega-	M	1 000 000	10^{6}
kilo-	k	1 000	10 ³
hecto-	h	100	10 ²
deka-	da	10	10^{1}
	base unit	1	10^{0}
deci-	d	0.1	10-1
centi-	с	0.01	10-2
milli-	m	0.001	10-3
micro-	μ	0.000 001	10-6
nano-	n	0.000 000 001	10-9

Recap: Summary of Useful Configurations

Today: Design!

Step 1: Specification

- Concretely restate the goals of the design
- Cut through all the words and pull out the important features

Step 2: Strategy

- Describe your strategy in the form of a block diagram
- Start by thinking about what you can measure vs. what you want to know

Step 3: Implementation

- Design the circuits and systems described in your strategy
- Choose the best circuit topology for the given constraints (e.g. inputs and outputs)

Today: Design!

Step 4: Verification

- Check that your design from Step 3 does what you specified in Step 1
- This extremely important step is the easiest to forget or not do thoroughly
- Check block-to-block connections
- Does one block loading another block and cause it to behave differently than expected?
- Are there any contradictions (e.g. forgot to connect power supplies, shorted a component, etc.)

Cascading Blocks

We want to connect two blocks without changing their functionality:

Loolation **Unity Gain Buffer** $H = I_{+} = I_{-} = 0$ $9A(U_4-U_-)=Vout$ \neq #2: $\overline{u_+} = u_-$ Only in negative feedback and $A = \infty$ Drun of ind. source vin vout E disturb the output Vnegative FB $N_{out} = f'(v_{in})$ $\mathcal{U}_{+} = \mathcal{V}_{1}\mathcal{U}$ - Nout U-=Vin U-=Vout Vin h = Vout = VinVout = Avo Vin * Rin= or Open circuit * Rout= 0 Stor short ckt

Step 4: Verification

Design Example 2

Your boss comes to you and asks you to build a countdown timer that will turn on an LED 2 seconds after a button is pressed. She tells you that the LED turns on when 2V is applied across it.

Step 1: Specification: Press button, measure 2 seconds, and then apply 2V across an LED.

Step 2: Strategy

Design Example 2

You can pretty much design a circuit to do anything

. 0

- Play music
- Recharge your batteries
- Talk to a satellite
- Run ChatGPT
- Call your mom
- Read your mind
- Your ideas here...

Just kidding. Like circuits? EECS16A \rightarrow EECS16B \rightarrow EE105 \rightarrow EE140 & EECS151 \rightarrow EE194