

EECS 16A Introduction to GPS

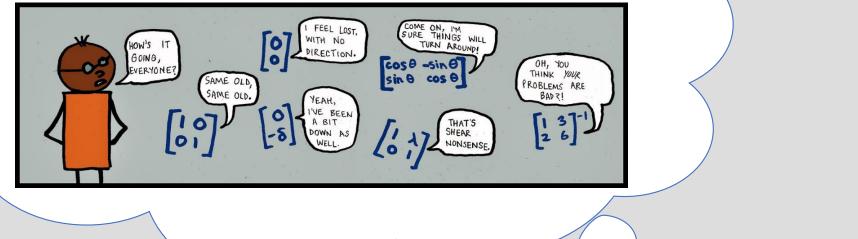
Admin

- Midterm 2 Monday, Apr. 17, 7-9 PM PT
 - Are you ready?

• Welcome to Module 3!

EECS 16A

- Module 1: Introduction to systems
 - How do we collect data? build a model?



EECS 16A

- Module 1: Introduction to systems
 - How do we collect data? build a model?
- Module 2: Introduction to circuits and design
 - How do we use a model to solve a problem
- Module 3: Introduction Signal Processing and Machine Learning
 - How do we "learn" models from data, and make predictions

EECS 16B

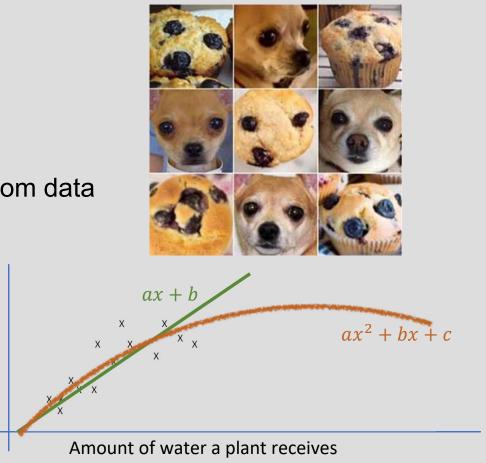
- Module 4: Advanced circuit design / analysis
- Module 5: Introduction to control and robotics
- Module 6: Introduction to data analysis and signal processing

Module 3: Introduction Signal Processing and Machine Learning

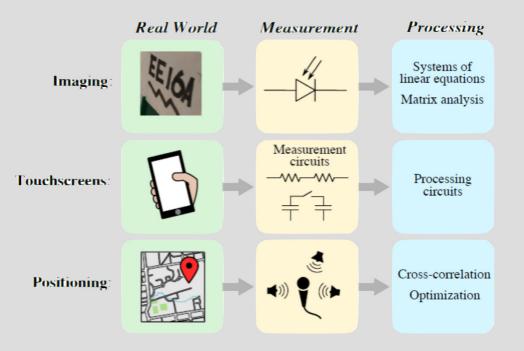
- How do we "learn" models from data, and make predictions

Plant growth rate

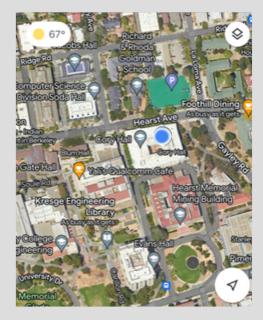
- Classification
 - Ex: How to tell a dog from a muffin
- Estimation
 - Ex: how to estimate model parameters from data
- Prediction
 - Ex: How to predict plant growth rates



16A Lab Examples



GPS: Global Positioning System



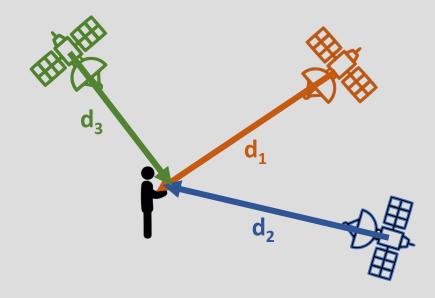
How does it work?

Gladys West

American mathematician

Gladys Mae West is an American mathematician known for her contributions to the mathematical modeling of the shape of the Earth, and her work on the development of the satellite geodesy models that were eventually incorporated into the Global Positioning System. Wikipedia

GPS positioning uses distances from satellites



How does knowing distances to satellites tell me my position?

How can I measure those distances?

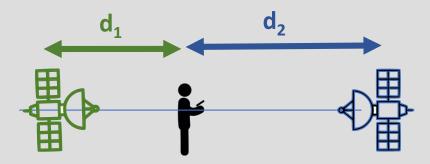
How many satellites to I need?

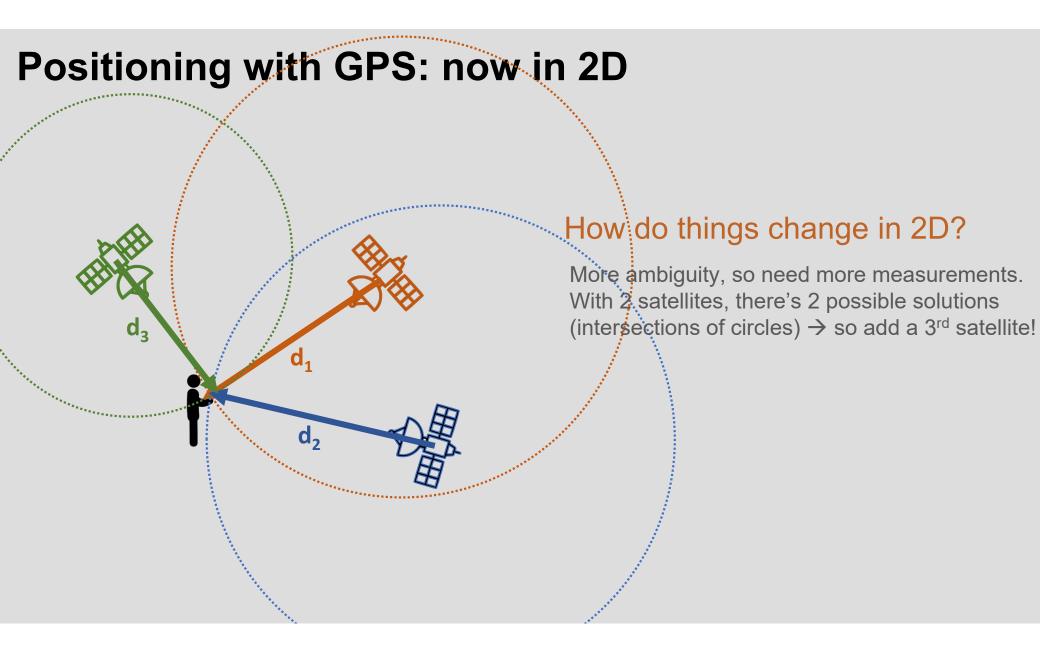
Positioning with GPS: simplify to 1D case

Is knowing one distance enough?

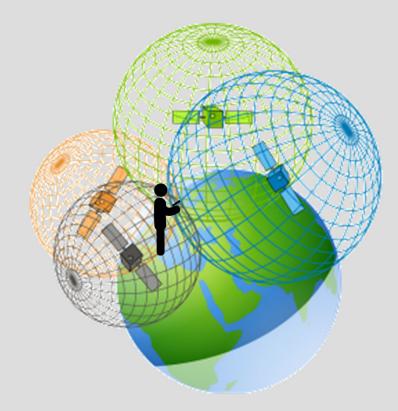
No, we also need direction! (or 2nd satellite)

Yes! (if I know where the satellites are and which is which, AND if they're not at same place, $d_1=d_2$)





Positioning with GPS: in 3D, intersection of spheres



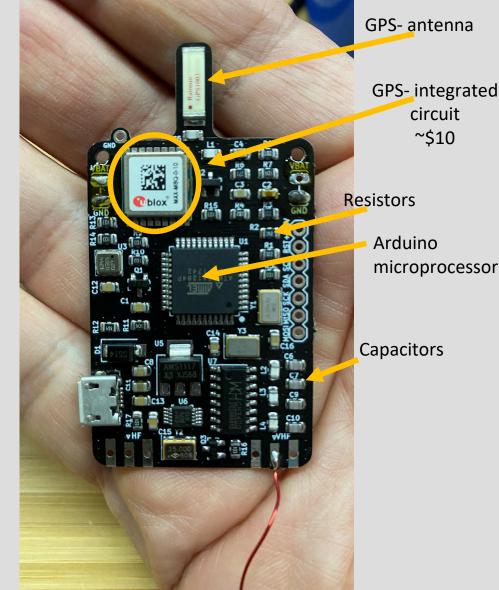
GIS Geography "trilateration"

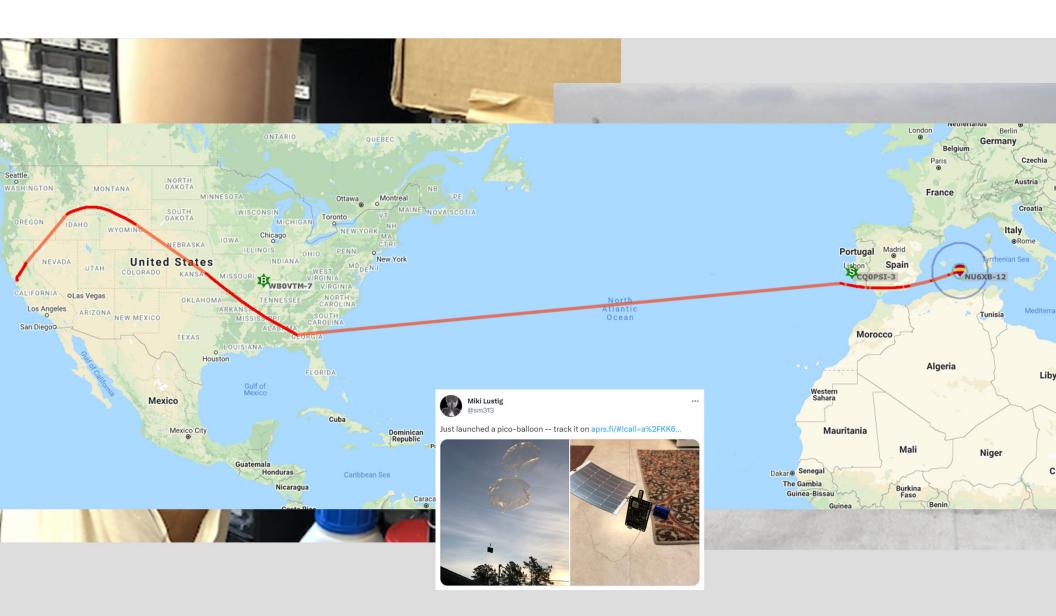
Do I need 3D GPS to get to the store?

Probably not, since I'm probably going to stay on surface of Earth!

Modern GPS

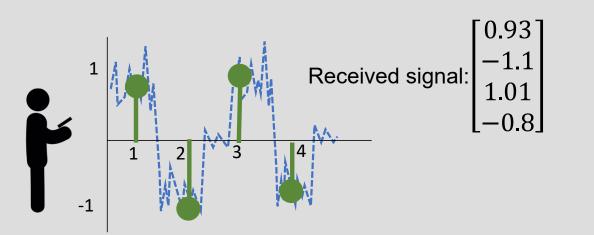
- 24 satellites
 - Known position
 - Time synchronized
 - 8 usually visible
- Problem:
 - Classify which satellite is transmitting
 - Estimate distance to GPS
 - Estimate position from noisy data
- Tools:
 - Inner product
 - Cross correlation
 - Least Squares





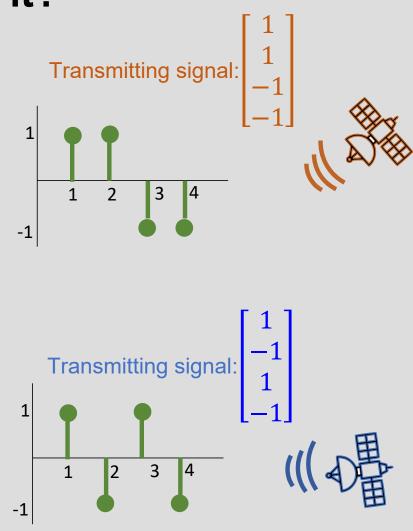
Classification: which satellite is it?

- Satellites transmit a unique code (radio signal)
- Signal is received and digitized by a receiver



Which satellite was received?

the Blue one



- Provide a measure of "similarity" between vectors
- Definition: For a <u>real-valued</u> vector space, 𝔍, the mapping

 $\vec{u}, \vec{v} \in \mathbb{V} \quad \rightarrow \quad < \vec{u}, \vec{v} > \in \mathbb{R}$

is called an inner product if it satisfies:

1. Symmetry: $\langle \vec{u}, \vec{v} \rangle = \langle \vec{u}, \vec{v} \rangle$ not true for $\mathbb{V} \in \mathbb{C}^{N}$ 2. Linearity: $\langle \alpha \vec{u}, \vec{v} \rangle = \alpha < \vec{u}, \vec{v} \rangle$ $\alpha \in \mathbb{R}$ $\langle \vec{u} + \vec{w}, \vec{v} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{w}, \vec{v} \rangle$

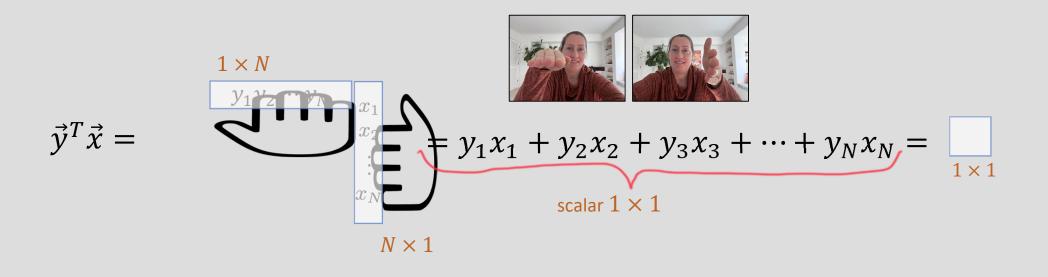
3. Positive-definitness:

$$\vec{v}, \vec{v} \ge 0$$
,
iff $\vec{v}, \vec{v} \ge 0 \Leftrightarrow \vec{v} = 0$

- Provide a measure of "similarity" between vectors
- (Euclidian) inner product is also called 'dot product', closely related to correlation

For two vectors $\vec{x}, \vec{y} \in \mathbb{R}^N$, the inner product is:

$$\langle \vec{x}, \vec{y}
angle = \vec{x}^T \vec{y}$$



- Provide a measure of "similarity" between vectors
- (Euclidian) inner product is also called 'dot product', closely related to correlation

For two vectors $\vec{x}, \vec{y} \in \mathbb{R}^N$, the inner product is: $< \vec{x}, \vec{y} >= \vec{x}^T \vec{y}$ Symmetry: $< \vec{x}, \vec{y} >= < \vec{y}, \vec{x} >$ $= a < \vec{x}, \vec{y} >$ Linearity: $< a\vec{x}, \vec{y} >= a < \vec{x}, \vec{y} >$ $< \vec{x} + \vec{z}, \vec{y} >= < \vec{x}, \vec{y} > + < \vec{z}, \vec{y} >$ $= < \vec{x}, \vec{y} > + < \vec{z}, \vec{y} >$ Positive Definite: $< \vec{x}, \vec{x} \ge 0$ $x^T x = \underbrace{\chi_{i}^{i} + \chi_{i}^{2} + \dots + \chi_{i}^{2}}_{a(1, \ge 0)}$

Norm

• Provides a measure of "length" of elements in the vector space

$$||\vec{v}|| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$$

• Properties of norms: Homogeneity: $\| \alpha \vec{v} \| = |\alpha| \| \vec{v} \| \quad \alpha \in \mathbb{R}$

Non-negativity: $\| \vec{v} \| \ge 0$

Triangle Inequality: $\| \vec{v} + \vec{u} \| \le \| \vec{v} \| + \| \vec{u} \|$

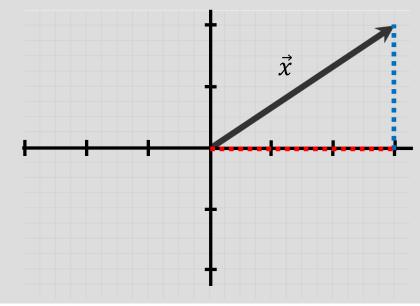
Norm (Euclidian)

• Provides a measure of "length" of elements in the vector space

$$\vec{x} \in \mathbb{R}^N$$
, $\| \vec{x} \| = \sqrt{\langle \vec{x}, \vec{x} \rangle} = \sqrt{\vec{x}^T \vec{x}}$

Example:
$$\vec{x} \in \mathbb{R}^2$$

$$\| \vec{x} \| = \sqrt{\vec{x}^T \vec{x}} = \sqrt{x_1^2 + x_2^2}$$



Geometrical Interpretation of Inner Product

ø

α

 \vec{v}

 \vec{x}

$$\vec{x} = \| \vec{x} \| \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix} \qquad \vec{y} = \| \vec{y} \| \begin{bmatrix} \cos(\phi) \\ \sin(\phi) \end{bmatrix}$$

Euclidian inner product:

$$\vec{x}T\vec{y} = ||\vec{x}|| ||\vec{y}|| (\cos \theta \cos \phi + \sin \theta \sin \theta)$$

= $||\vec{x}|| ||\vec{y}|| \cos (\phi - \theta)$
= $||\vec{x}|| ||\vec{y}|| \cos(\phi)$

$$\langle \vec{x}, \vec{y} \rangle = \parallel \vec{x} \parallel \parallel \vec{y} \parallel \cos(\alpha)$$

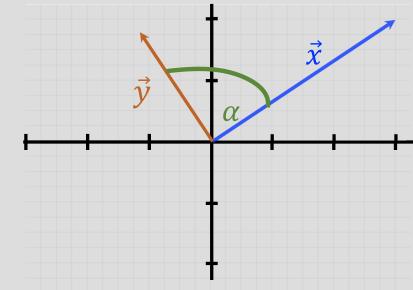
Orthogonality

• two vectors \vec{x} , \vec{y} are said to be orthogonal if $\langle \vec{x}, \vec{y} \rangle = 0$

$$\langle \vec{x}, \vec{y} \rangle = \parallel \vec{x} \parallel \parallel \vec{y} \parallel \cos(\alpha)$$

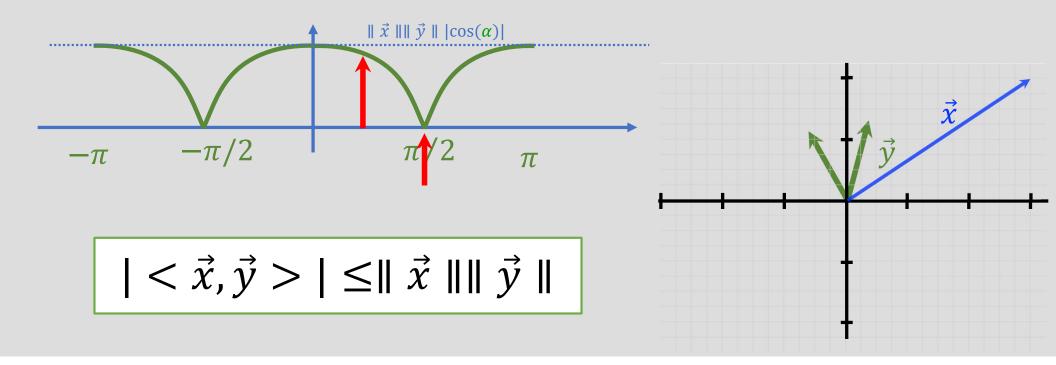
$$\Rightarrow \cos(\alpha) = 0$$
$$\Rightarrow \alpha = \frac{\pi}{2}$$

Vectors are colinear, $\cos(\alpha)=1$



Cauchy-Schwarz Inequality

Consider: $| < \vec{x}, \vec{y} > | = || \vec{x} || || \vec{y} || |\cos(\alpha)|$



• Definition: For a <u>real-valued</u> vector space, 𝔍, the mapping

$$\vec{u}, \vec{v} \in \mathbb{V} \quad \rightarrow \quad < \vec{u}, \vec{v} > \in \mathbb{R}$$

is called an inner product if it satisfies:

1. Symmetry: $\langle \vec{u}, \vec{v} \rangle = \langle \vec{u}, \vec{v} \rangle$ not true for $\mathbb{V} \in \mathbb{C}^{N}$ 2. Linearity: $\langle \alpha \vec{u}, \vec{v} \rangle = \alpha < \vec{u}, \vec{v} \rangle$ $\alpha \in \mathbb{R}$ $\langle \vec{u} + \vec{w}, \vec{v} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{w}, \vec{v} \rangle$

3. Positive-definitness:

$$\vec{v}, \vec{v} \ge 0$$
,
iff $\vec{v}, \vec{v} \ge 0 \Leftrightarrow \vec{v} = 0$

Example : Weighted Inner Product

 $Q \in \mathbb{R}^{N \times N}$ symmetric with positive eigenvalues

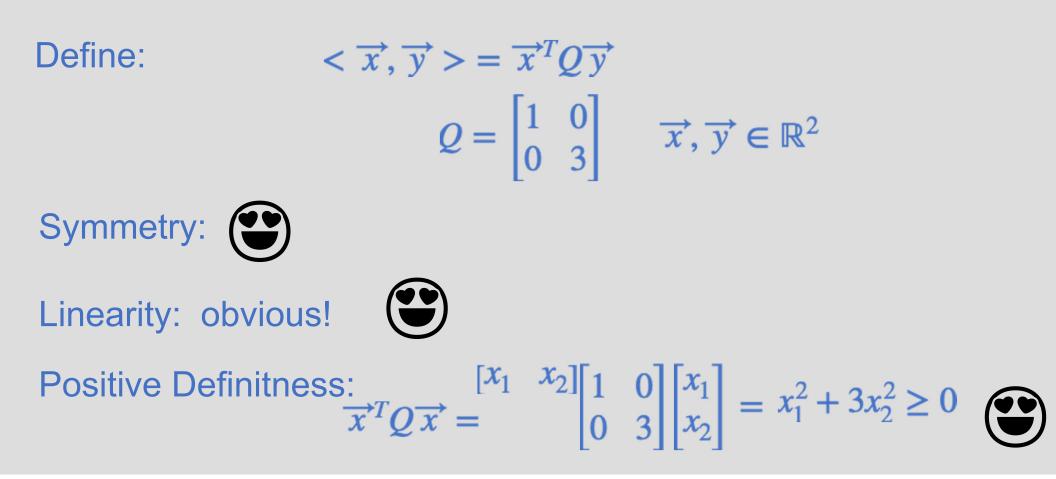
Define:

$$\langle \vec{x}, \vec{y} \rangle = \vec{x}^T Q \vec{y}$$
$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \quad \vec{x}, \vec{y} \in \mathbb{R}^2$$

Symmetry:

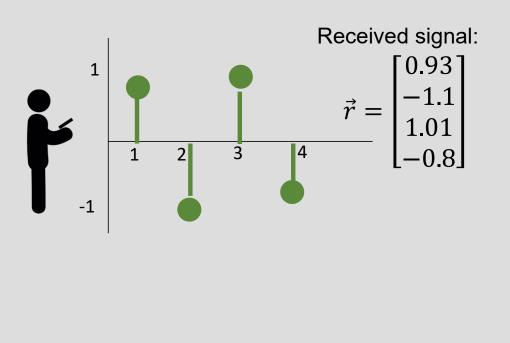
$$\vec{x}^T Q \vec{y} = \begin{bmatrix} x_1 & x_2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 & 3x_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1y_1 + 3x_2y_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} y_1 & y_2 \end{bmatrix} = \begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} y_1 & y_2 \end{bmatrix} = \begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} y_1 & y_2 \end{bmatrix} = \begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} y_1 & y_2 \end{bmatrix} = \begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} y_1 & y_2 \end{bmatrix} = \begin{bmatrix} y$$

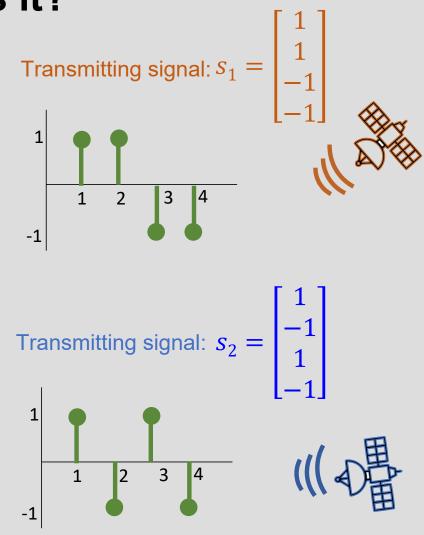
Example: Weighted Inner Product



Classification: which satellite is it?

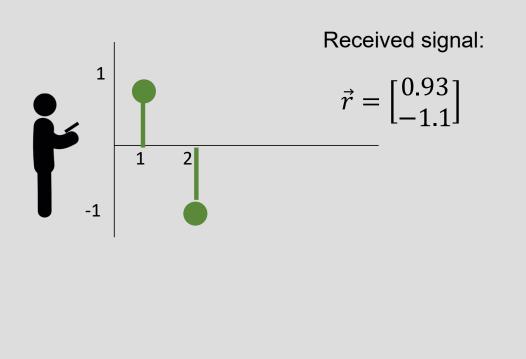
- Satellites transmit a unique code (radio signal)
- Signal is received and digitized by a receiver

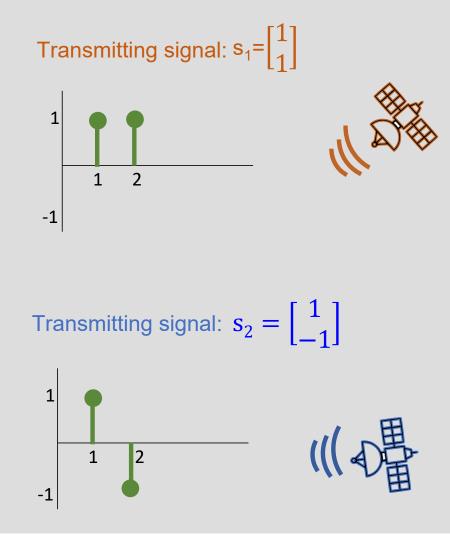




Classification: which satellite is it?

- Satellites transmit a unique code (radio signal)
- Signal is received and digitized by a receiver



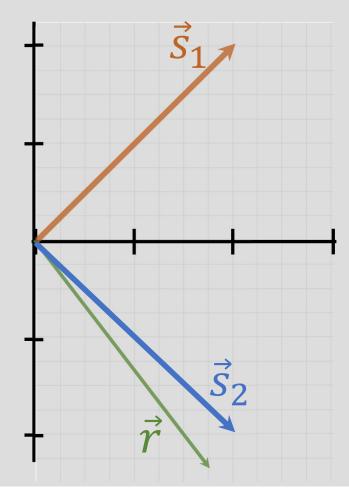


Classification: how to mathematically formulate

Is the received signal $\vec{r} = \begin{bmatrix} 0.93 \\ -1.1 \end{bmatrix}$

coming from satellite 1 or satellite 2? $s_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $s_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Notation is an optimization problem!



Classification

$$i^{*} = \underset{i \in \{1,2\}}{\operatorname{argmin}} \| \vec{r} - \vec{S}_{i} \|^{2}$$

$$||\vec{r} - \vec{S}_{i}||^{2} = \langle \vec{r} - \vec{S}_{i}, \vec{r} - \vec{S}_{i} \rangle \qquad s_{i} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} s_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$= \langle \vec{r}_{i}, \vec{r} - \vec{S}_{i} \rangle - \langle \vec{S}_{i}, \vec{r} - \vec{S}_{i} \rangle$$

$$= \langle \vec{r}_{i}, \vec{r} \rangle - \langle \vec{r}_{i}, \vec{S}_{i} \rangle - \langle \vec{S}_{i}, \vec{r} \rangle + \langle \vec{S}_{i}, \vec{S}_{i} \rangle$$

$$= ||\vec{r}||^{2} + ||\vec{S}_{i}||^{2} - 2 \langle \vec{r}_{i}, \vec{S}_{i} \rangle$$
This is the term that
Fixed fixed for the product.

Classification

$$\| \vec{r} - \vec{s}_i \|^2 = \| \vec{r} \|^2 + \| \vec{s}_i \|^2 - 2\langle \vec{r}, \vec{s}_i \rangle$$

If $\langle \vec{r}, \vec{s}_i \rangle$ is maximized, then $\| \vec{r} - \vec{s}_i \|^2$ is minimized

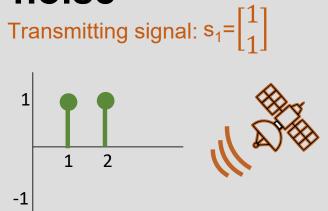
Classification procedure:

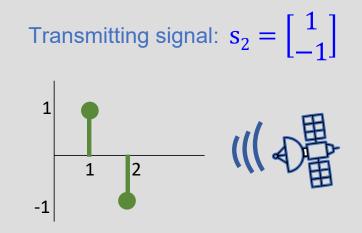
for $i \in \{1,2\}$ compute $\langle \vec{r}, \vec{s}_i \rangle$ $\langle \vec{r}, \vec{s}_2 \rangle = 2.03$

Return index i that maximizes the above $i^* = 2$

Interference: multiple satellites and noise

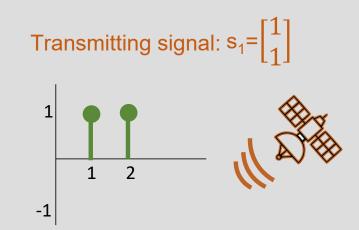
Possibility 1: Both sats on $\vec{r} = \vec{s}_1 + \vec{s}_2 + \vec{n}$ Possibility 2: Only S1 is on $\vec{r} = \vec{s}_1 + \vec{n}$ Possibility 3: Only S2 is on $\vec{r} = \vec{s}_2 + \vec{n}$ Possibility 4: None is on $\vec{r} = \vec{n}$

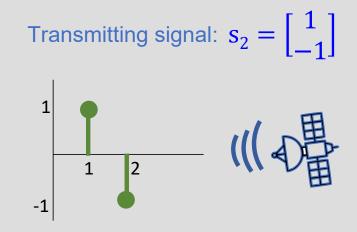




Interference

Possibility 1: Both sats are on





Q: How to design codes that don't interfere?

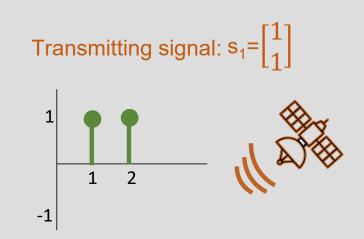
A: Make them orthogonal! $\langle \vec{s}_2, \vec{s}_1 \rangle = 0$

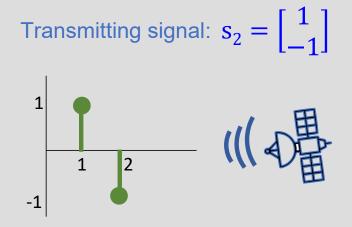
Interference

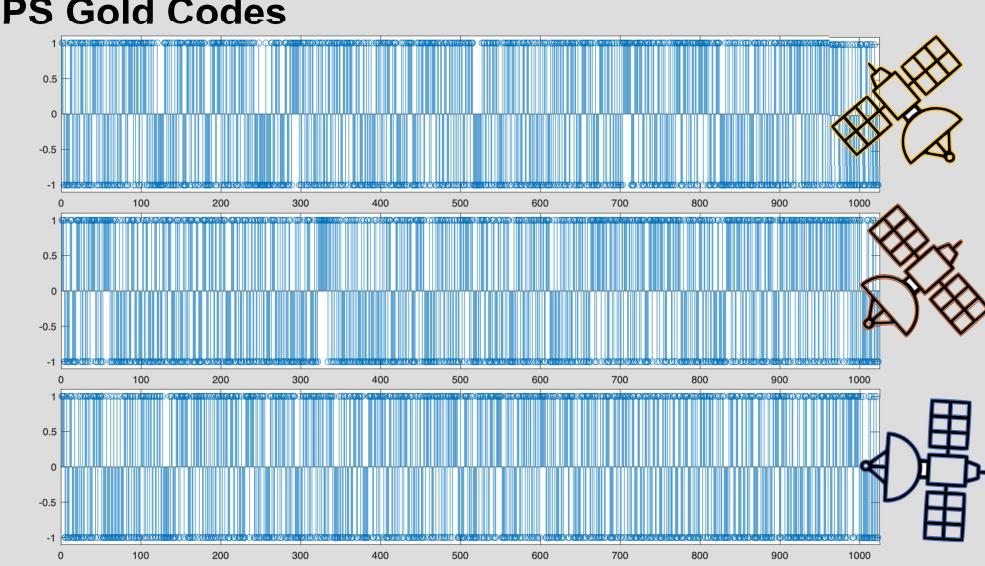
Possibility 1: Both sats are in TX $\vec{r} = \vec{s}_1 + \vec{s}_2 + \vec{n}$ $\langle \vec{r}, \vec{s}_1 \rangle = \langle \vec{s}_1 + \vec{s}_2 + \vec{n}, \vec{s}_1 \rangle$ $= \langle \vec{s}_1, \vec{s}_1 \rangle + \langle \vec{s}_2, \vec{s}_1 \rangle + \langle \vec{n} \hat{s}_1 \hat{s}_1 \rangle$ Desired Interference

Q: How to design codes that don't interfere?

A: Make them orthogonal! $\langle \vec{s}_2, \vec{s}_1 \rangle = 0$







GPS Gold Codes

