

Admin

- Midterm 2 Monday, Apr. 17, 7-9 PM PT
- Are you ready?
- Welcome to Module 3!

EECS 16A

- Module 1: Introduction to systems
- How do we collect data? build a model?

EECS 16A

- Module 1: Introduction to systems
- How do we collect data? build a model?
- Module 2: Introduction to circuits and design
- How do we use a model to solve a problem
- Module 3: Introduction Signal Processing and Machine Learning
- How do we "learn" models from data, and make predictions

EECS 16B

- Module 4: Advanced circuit design / analysis
- Module 5: Introduction to control and robotics
- Module 6: Introduction to data analysis and signal processing
- Module 3: Introduction Signal Processing and Machine Learning
- How do we "learn" models from data, and make predictions
- Classification
- Ex: How to tell a dog from a muffin

- Estimation

- Ex: how to estimate model parameters from data
- Prediction
- Ex: How to predict plant growth rates

16A Lab Examples

GPS: Global Positioning System

How does it work?

American mathematician

GPS positioning uses distances from satellites

How does knowing distances to satellites tell me my position?

How can I measure those distances?

How many satellites to I need?

Positioning with GPS: simplify to 1D case

Is knowing one distance enough?

No, we also need direction! (or $2^{\text {nd }}$ satellite)

Now can I find my position?

Yes! (if I know where the satellites are and which is which, AND if they're not at same place, $d_{1}=d_{2}$)

Positioning with GPS: now in 2D

Positioning with GPS: in 3D, intersection of spheres

Do I need 3D GPS to get to the store?

Probably not, since l'm probably going to stay on surface of Earth!

Modern GPS

- 24 satellites
- Known position
- Time synchronized
- 8 usually visible
- Problem:
- Classify which satellite is transmitting
- Estimate distance to GPS
- Estimate position from noisy data
- Tools:
- Inner product
- Cross correlation
- Least Squares

Classification: which satellite is it?

- Satellites transmit a unique code (radio signal)
- Signal is received and digitized by a receiver

Which satellite was received?
the Blue one

Inner Product

- Provide a measure of "similarity" between vectors
- Definition: For a real-valued vector space, \mathbb{V}, the mapping

$$
\vec{u}, \vec{v} \in \mathbb{V} \quad \rightarrow \quad<\vec{u}, \vec{v}>\in \mathbb{R}
$$

is called an inner product if it satisfies:

1. Symmetry: $\langle\vec{u}, \vec{v}\rangle=\langle\vec{u}, \vec{v}\rangle$) not true for $\mathbb{V} \in \mathbb{C}^{N}($
2. Linearity: $\langle\alpha \vec{u}, \vec{v}\rangle=\alpha<\vec{u}, \vec{v}\rangle \quad \alpha \in \mathbb{R}$

$$
<\vec{u}+\vec{w}, \vec{v}>=<\vec{u}, \vec{v}>+<\vec{w}, \vec{v}>
$$

3. Positive-definitness:

$$
\langle\vec{v}, \vec{v}\rangle \geq 0, \quad \text { iff }\langle\vec{v}, \vec{v}\rangle=0 \Leftrightarrow \vec{v}=0
$$

Inner Product

- Provide a measure of "similarity" between vectors
- (Euclidian) inner product is also called 'dot product', closely related to correlation

For two vectors $\vec{x}, \vec{y} \in \mathbb{R}^{N}$,the inner product is: $\quad\langle\overrightarrow{\boldsymbol{x}}, \overrightarrow{\boldsymbol{y}}\rangle=\overrightarrow{\boldsymbol{x}}^{\boldsymbol{T}} \overrightarrow{\boldsymbol{y}}$

Inner Product

- Provide a measure of "similarity" between vectors
- (Euclidian) inner product is also called 'dot product', closely related to correlation

For two vectors $\vec{x}, \vec{y} \in \mathbb{R}^{N}$, the inner product is: $\langle\overrightarrow{\boldsymbol{x}}, \overrightarrow{\boldsymbol{y}}\rangle=\overrightarrow{\boldsymbol{x}}^{\boldsymbol{T}} \overrightarrow{\boldsymbol{y}}$

$$
>(a x)^{\top} y=a x^{\top} y
$$

Symmetry: $\langle\vec{x}, \vec{y}\rangle=\langle\vec{y}, \vec{x}\rangle$

$$
=a\langle x, y\rangle v
$$

Linearity: $\langle\boldsymbol{a r}, \vec{y}\rangle=\boldsymbol{a}\langle\vec{x}, \vec{y}\rangle$

$$
\Longrightarrow \begin{aligned}
& (x+z)^{\top} y
\end{aligned}
$$

$$
<\vec{x}+\vec{z}, \vec{y}>=<\vec{x}, \vec{y}>+<\vec{z}, \vec{y}
$$

$$
=x^{\top} y+z^{\top} y
$$

$$
=\langle x, y\rangle+\langle z, y\rangle
$$

Positive Definite: $\langle\vec{x}, \vec{x} \geq 0 \quad x^{\top} x=\underbrace{x_{1}^{2}+x_{2}^{2}+\ldots x_{N}^{2}}_{\text {all }}$

Norm

- Provides a measure of "length" of elements in the vector space

$$
\|\vec{v}\|=\sqrt{\langle\vec{v}, \vec{v}\rangle}
$$

- Properties of norms:

Homogeneity: $\quad\|\alpha \vec{v}\|=|\alpha|\|\vec{v}\| \quad \alpha \in \mathbb{R}$

Non-negativity: $\quad\|\vec{v}\| \geq 0$
Triangle Inequality: $\|\vec{v}+\vec{u}\| \leq\|\vec{v}\|+\|\vec{u}\|$

Norm (Euclidian)

- Provides a measure of "length" of elements in the vector space

$$
\vec{x} \in \mathbb{R}^{N},\|\vec{x}\|=\sqrt{\langle\vec{x}, \vec{x}\rangle}=\sqrt{\vec{x}^{T} \vec{x}}
$$

Example: $\vec{x} \in \mathbb{R}^{2}$

$$
\|\vec{x}\|=\sqrt{\vec{x}^{T} \vec{x}}=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

Geometrical Interpretation of Inner Product

$$
\overrightarrow{\boldsymbol{x}}=\|\overrightarrow{\boldsymbol{x}}\|\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right] \quad \overrightarrow{\boldsymbol{y}}=\|\overrightarrow{\boldsymbol{y}}\|\left[\begin{array}{c}
\cos (\phi) \\
\sin (\phi)
\end{array}\right]
$$

Euclidian inner product:

$$
\begin{aligned}
\vec{x}^{\top} \vec{y} & =\|\vec{x}\|\|\vec{y}\|(\cos \theta \cos \phi+\sin \theta \sin \phi) \\
& =\|\vec{x}\|\|\vec{y}\| \cos (\underbrace{\phi-\theta}_{\alpha}) \\
& =\|\vec{x}\|\|\vec{y}\| \cos (\alpha)
\end{aligned}
$$

$$
<\vec{x}, \vec{y}>=\|\vec{x}\|\|\vec{y}\| \cos (\alpha)
$$

Orthogonality

- two vectors \vec{x}, \vec{y} are said to be orthogonal if $\langle\vec{x}, \vec{y}\rangle=0$

$\langle\vec{x}, \overrightarrow{\boldsymbol{y}}\rangle=\|\vec{x}\|\|\vec{y}\| \cos (\alpha)$

$$
\begin{aligned}
& \Rightarrow \cos (\alpha)=0 \\
& \Rightarrow \alpha=\frac{\pi}{2}
\end{aligned}
$$

What happens when α is zero?
Vectors are colinear, $\cos (\alpha)=1$

Cauchy-Schwarz Inequality

Consider: $\quad|<\vec{x}, \vec{y}>|=\|\vec{x}\|\|\vec{y}\|| \cos (\alpha)|$

$$
|\langle\vec{x}, \vec{y}\rangle| \leq\|\vec{x}\|\|\vec{y}\|
$$

Inner Product

- Definition: For a real-valued vector space, \mathbb{V}, the mapping

$$
\vec{u}, \vec{v} \in \mathbb{V} \quad \rightarrow \quad<\vec{u}, \vec{v}>\in \mathbb{R}
$$

is called an inner product if it satisfies:

1. Symmetry: $\langle\vec{u}, \vec{v}\rangle=\langle\vec{u}, \vec{v}\rangle$) not true for $\mathbb{V} \in \mathbb{C}^{N}($
2. Linearity: $\langle\alpha \vec{u}, \vec{v}\rangle=\alpha<\vec{u}, \vec{v}\rangle \quad \alpha \in \mathbb{R}$ $\langle\vec{u}+\vec{w}, \vec{v}\rangle=\langle\vec{u}, \vec{v}\rangle+\langle\vec{w}, \vec{v}\rangle$
3. Positive-definitness:

$$
<\vec{v}, \vec{v}>\geq 0 \quad{ }_{\text {iff }}<\vec{v}, \vec{v}>=0 \Leftrightarrow \vec{v}=0
$$

Example : Weighted Inner Product

$$
Q \in \mathbb{R}^{N \times N} \text { symmetric with positive eigenvalues }
$$

Define:

$$
\begin{aligned}
\langle\vec{x}, \vec{y}\rangle & =\vec{x}^{T} Q \vec{y} \\
Q & =\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] \quad \vec{x}, \vec{y} \in \mathbb{R}^{2}
\end{aligned}
$$

Symmetry:

$$
\begin{array}{ll}
\vec{x}^{T} Q \vec{y}= & {\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} & 3 x_{2}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=x_{1} y_{1}+3 x_{2} y_{2}} \\
\vec{y}^{T} Q \vec{x}=\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{1} & 3 y_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1} y_{1}+3 x_{2} y_{2}
\end{array}
$$

Example: Weighted Inner Product

Define:

$$
\begin{aligned}
\langle\vec{x}, \vec{y}\rangle & =\vec{x}^{T} Q \vec{y} \\
Q & =\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] \quad \vec{x}, \vec{y} \in \mathbb{R}^{2}
\end{aligned}
$$

Symmetry: 8
Linearity: obvious!
(-)
Positive Definitness: ${\underset{\vec{x}}{ }{ }^{T} Q \vec{x}=}_{\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{1}^{2}+3 x_{2}^{2} \geq 0.40}$

Classification: which satellite is it?

- Satellites transmit a unique code (radio signal)
- Signal is received and digitized by a receiver

Classification: which satellite is it?

- Satellites transmit a unique code (radio signal)
- Signal is received and digitized by a receiver

Transmitting signal: $s_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Transmitting signal: $s_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$

Classification: how to mathematically formulate

 Is the received signal $\vec{r}=\left[\begin{array}{l}0.93 \\ -1.1\end{array}\right]$ coming from satellite 1 or satellite 2 ?$$
s_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad s_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

$$
i^{*}=\underset{i \in\{1,2\}}{\operatorname{argmin}}\left\|\vec{r}-\vec{S}_{i}\right\|
$$

Notation is an optimization problem!

Classification

$$
\begin{aligned}
& i^{*}=\underset{i \in\{1,2\}}{\operatorname{argmin}} \| \vec{r} \vec{S} \\
& \boldsymbol{i}
\end{aligned} \|^{2} .
$$

Classification

$$
\left\|\vec{r}-\vec{s}_{i}\right\|^{2}=\|\vec{r}\|^{2}+\left\|\vec{s}_{i}\right\|^{2}-2\left\langle\vec{r}, \vec{s}_{i}\right\rangle
$$

If $\left\langle\vec{r}, \vec{S}_{i}\right\rangle$ is maximized, then $\left\|\vec{r}-\vec{S}_{i}\right\|^{2}$ is minimized
Classification procedure:

for $i \in\{1,2\}$ compute $\left\langle\vec{r}, \vec{S}_{i}\right\rangle$

$$
\begin{aligned}
& \left\langle\vec{r}, \vec{s}_{1}\right\rangle=-0.17 \\
& \left\langle\vec{r}, \vec{s}_{2}\right\rangle=2.03
\end{aligned}
$$

Return index i that maximizes the above $\quad i^{*}=2$

Interference: multiple satellites and noise

$$
\text { Transmitting signal: } s_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Possibility 1: Both sats on

$$
\vec{r}=\vec{s}_{1}+\vec{s}_{2}+\vec{n}
$$

Possibility 2: Only S 1 is on

$$
\vec{r}=\vec{s}_{1}+\vec{n}
$$

Possibility 3: Only S2 is on

$$
\vec{r}=\vec{s}_{2}+\vec{n}
$$

Possibility 4: None is on

$$
\vec{r}=\vec{n}
$$

Transmitting signal: $s_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$

Interference

Possibility 1: Both sats are on

Transmitting signal: $s_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Transmitting signal: $s_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$

Q: How to design codes that don't interfere?
A: Make them orthogonal! $\left\langle\vec{s}_{2}, \vec{s}_{1}\right\rangle=0$

Interference

Possibility 1: Both sats are in TX

$$
\vec{r}=\vec{s}_{1}+\vec{s}_{2}+\vec{n}
$$

$$
\left\langle\vec{r}, \vec{s}_{1}\right\rangle=\left\langle\vec{s}_{1}+\vec{s}_{2}+\vec{n}, \vec{s}_{1}\right\rangle
$$

$$
=\left\langle\vec{s}_{1}, \vec{s}_{1}\right\rangle+\left\langle\vec{s}_{2}, \vec{s}_{1}\right\rangle+\langle\vec{n} \text {, mali }\rangle
$$

Desired Interference

Q: How to design codes that don't interfere?
A: Make them orthogonal! $\left\langle\vec{s}_{2}, \vec{s}_{1}\right\rangle=0$

Transmitting signal: $s_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Transmitting signal: $s_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$

GPS Gold Codes

Example:

$$
\left\langle\vec{r}, \vec{s}_{i}\right\rangle=\vec{r}^{T} \vec{s}_{i}
$$

\square

$$
\vec{r}^{T} \vec{s}_{1} \quad \vec{r}^{T} \vec{S}_{2} \quad \cdots \quad \vec{r}^{T} \vec{S}_{24}
$$

