

EECS 16A

Correlations

Admin

- MT2 is on MONDAY!

ARE YOU READYYYYY????

Procrastinator? No. I save all of my homework until the last minute because then l'll be older, therefore more wise.
your cards

GPS positioning uses distances from satellites

How does knowing distances to satellites tell me my position?

How can I measure those distances?

How many satellites to I need?

Last time: Classification - which satellite is 'on'?

Received signal $\overrightarrow{\boldsymbol{r}}$
| ИIVIIII\|IIV VIVIIMI U|
Take inner product of the received signal and each transmitted signal: $\left\langle\vec{r}, \vec{S}_{B}\right\rangle=$ small

Inner Product

For two vectors $\vec{x}, \vec{y} \in \mathbb{R}^{n}$, the inner product is:

Norm - Provides a measure of "length" of elements in the vector space

$$
\|\vec{v}\|=\sqrt{\langle\vec{v}, \vec{v}\rangle}
$$

GPS Gold Codes

Example:

What's next?

Now I know which satellites are 'on'.
Next I need to figure out my distance from each.

How?

Timing: how far away is the satellite?

- Satellites transmit a unique code (radio signal)
- Signal is received and digitized by a receiver

Calculate the inner product of \vec{r} and \vec{s} ?

Timing: how far away is the satellite?

How can I calculate what the delay/shift is?

How can I figure out what the shift is?

Problem: \vec{r} and \vec{S}_{1} are not the same length!
Solution: we can 'zero pad' them

$$
\begin{array}{ll}
\vec{r}=\left[\begin{array}{lllll}
r_{0} & r_{1} & r_{2} & \cdots & r_{8}
\end{array}\right]^{T} & \Rightarrow r[n]= \begin{cases}r_{n} & 0 \leq n \leq 8 \\
0 & \text { elsewhere }\end{cases} \\
\vec{s}=\left[\begin{array}{lllll}
s_{0} & s_{1} & s_{2} & \cdots & s_{4}
\end{array}\right]^{T} & \Rightarrow s[n]=\left\{\begin{array}{rl}
s_{n} & 0 \leq n \leq 4 \\
\mathbf{0} & \text { elsewhere }
\end{array}\right.
\end{array}
$$

"Pattern Matching" of Signals

$$
\begin{aligned}
& r[n]=\left\{\begin{array}{cc}
r_{n} & 0 \leq n \leq 8 \\
0 & \text { elsewhere }
\end{array}\right. \\
& s[n]=\left\{\begin{array}{cc}
s_{n} & 0 \leq n \leq 4 \\
0 & \text { elsewhere }
\end{array}\right.
\end{aligned}
$$

"Pattern Matching" of Signals

$$
\langle r[n], s[n]\rangle=\sum_{n=-\infty}^{\infty} r[n] s[n]
$$

"Pattern Matching" of Signals

Q: When will I get a large inner product?
A: when I do an inner product of $r[n]$ with a shifted version of $s[n]$

"Pattern Matching" of Signals

$$
\langle r[n], s[n-1]\rangle
$$

"Pattern Matching" of Signals

$$
\operatorname{corr}_{r}(\vec{s})[1]=\langle r[n], s[n-1]\rangle=\sum_{n=-\infty}^{\infty} r[n] s[n-1]=1
$$

"Pattern Matching" of Signals

$$
\operatorname{corr}_{r}(\vec{s})[1]=\langle r[n], s[n-1]\rangle=\sum_{n=-\infty}^{\infty} r[n] s[n-1]=1
$$

"Pattern Matching" of Signals

$$
\operatorname{corr}_{r}(\vec{s})[2]=\langle r[n], s[n-2]\rangle=0
$$

"Pattern Matching" of Signals

$\operatorname{corr}_{r}(\vec{s})[3]=\langle r[n], s[n-3]\rangle=5$

"Pattern Matching" of Signals

$$
\operatorname{corr}_{r}(\vec{s})[4]=\langle r[n], s[n-4]\rangle=0
$$

"Pattern Matching" of Signals

$\operatorname{corr}_{r}(\vec{s})[5]=\langle r[n], s[n-5]\rangle=1$

"Pattern Matching" of Signals

$$
\operatorname{corr}_{r}(\vec{s})[6]=\langle r[n], s[n-6]\rangle=0
$$

"Pattern Matching" of Signals

$$
\operatorname{corr}_{r}(\vec{s})[7]=\langle r[n], s[n-7]\rangle=1
$$

"Pattern Matching" of Signals

$$
\operatorname{corr}_{r}(\vec{s})[-1]=\langle r[n], s[n+1]\rangle=1
$$

"Pattern Matching" of Signals

Definition of correlation

The cross-correlation between vectors \vec{r} and \vec{s} is:

$$
\operatorname{corr}_{\vec{r}}(\vec{s})[k]=\langle r[n], s[n-k]\rangle=\sum_{n=-\infty}^{\infty} r[n] s[n-k]
$$

So what is the delay?

$$
k^{*}=\underset{k}{\operatorname{argmax}} \operatorname{corr}_{\vec{r}}(\vec{s})[k]
$$

Cross-correlation Properties

What is the length of the cross-correlation?

- If $\vec{x} \in \mathbb{R}^{N}$, and $\vec{y} \in \mathbb{R}^{M}$, then the length of $\operatorname{corr}_{\vec{x}}(\vec{y})$ is $N+M-1$

Can I swap the order of the things?

- $\operatorname{corr}_{\vec{x}}(\vec{y}) \neq \operatorname{corr}_{\vec{y}}(\vec{x})$

What's the correlation of something with itself?

- $\operatorname{corr}_{\vec{x}}(\vec{x})$ is called auto-correlation

Periodic Signals

- Satellites repeat the codes over and over
- cross-correlation is "periodically expanded" instead of zero-padded
- result is periodic

Transmitting signal \vec{s}_{1}

What are good properties for the codes?

Two problems: 1. Interference 2. Timing

- Shifted versions of self are not very correlated
- Songs for each satellite/beacon are not very correlated

What kind of correlations do we want?

$$
r[n]=s_{1}\left[n-\tau_{1}\right]+s_{2}\left[n-\tau_{2}\right]+\text { noise }[n]
$$

Correlate with $s_{1}[n]$:
$\operatorname{corr}_{\vec{r}}\left(\vec{s}_{1}\right)[k]=\left\langle r[n], s_{1}[n-k]\right\rangle$

$$
=\left\langle s_{1}\left[n-\tau_{1}\right], s_{1}[n-k]\right\rangle+\left\langle s_{2}\left[n-\tau_{2}\right], s_{1}[n-k]\right\rangle+\left\langle\text { noise }[n], s_{1}[n-k]\right\rangle
$$

cross-correlation with other satellites should be small

cross-correlation with noise
should be small (always true?)

Received Signal

$r[n]=s_{1}\left[n-\tau_{1}\right]+s_{2}\left[n-\tau_{2}\right]+$ noise $[n]$

Is this a good code?

What will the correlation look like?

Timing....

- Satellites transmit a (modulated) unique code
- Radio signal
- Signal is received (demodulated) and digitized by a receiver

How to solve for GPS coordinates:

1 Identify which satellites are 'on'

2 Find the delay/shift for each satellite

3 Use shifts to find distances to each satellite
4. Trilateration to find my coordinates

