Friend: Come over!

Me: I have no idea where i am and all I have is this recording that sounds like trash
Friend: I have chocolate ©
Me :

Received signal

EECS 16A

Trilateration and Projections

Inner Product

- Provide a measure of "similarity" between vectors
- (Euclidian) inner product is also called 'dot product'

For two vectors $\vec{x}, \vec{y} \in \mathbb{R}^{n}$, the inner product is:

$$
<\vec{x}, \vec{y}>=\vec{x}^{T} \vec{y}
$$

$$
=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+\ldots x_{n} y_{n}
$$

$$
=\sum_{i=1}^{n} x_{i} y_{i}
$$

Norm • Provides a measure of "length" of elements in the vector space

$$
\|\vec{v}\|=\sqrt{\langle\vec{v}, \vec{v}\rangle}
$$

Classification - which satellite is 'on'?

Transmitting signal \vec{s}_{B}

$$
\left\langle\vec{r}, \vec{s}_{A}\right\rangle=\text { large }
$$

$$
\left\langle\vec{r}, \vec{s}_{B}\right\rangle=\text { small }
$$

The cross-correlation between vectors \vec{r} and \vec{s} is:

$$
\operatorname{corr}_{\vec{r}}(\vec{s})[k]=\langle r[n], s[n-k]\rangle=\sum_{n=-\infty}^{\infty} r[n] s[n-k]
$$

Correlation: scatter plot view

more correlated

"Correlation is not causation"

Both ice cream sales and shark attacks increase when the weather is hot and sunny, but they are not caused by each other (they are caused by good weather, with lots of people at the beach, both eating ice cream and having a swim in the sea)

SOURCE DREW DAWSON AND KATHRYN REID' "FATIGUE, ALCOHOL, AND PERFORMANCE MPAIRMENT," NATURE VOL. 388, JULY 1997.

Received signal contains multiple delayed codes

$$
r[n]=s_{1}\left[n-\tau_{1}\right]+s_{2}\left[n-\tau_{2}\right]+\text { noise }[n]
$$

Correlate with $s_{1}[n]$:

Received signal contains multiple delayed codes

$r[n]=s_{1}\left[n-\tau_{1}\right]+s_{2}\left[n-\tau_{2}\right]+$ noise $[n]$

$$
\begin{aligned}
& \operatorname{corr}_{\vec{r}}\left(\vec{s}_{1}\right) \\
& \operatorname{corr}_{\vec{r}}\left(\vec{s}_{2}\right)
\end{aligned}
$$

How to solve for GPS coordinates:

(1) Identify which satellites are 'on'
(2) Find the delay/shift for each satellite
(3) Use shifts to find distances to each satellite
(4) Trilateration to find my coordinates

Friend: Come over!
Me: I have no idea where i am and all I have is this recording that sounds like trash Friend: I have chocolate :)

Trilateration: Finding position from distances

$$
\begin{align*}
& \text { 1) } \begin{array}{l}
\text { known positions } \\
\text { 2) } \\
\text { 2) } \vec{x}-\vec{a}_{1} \|^{2}=d_{1}^{2} \leftarrow \text { square both s } \\
\text { 3) }
\end{array} \quad \begin{array}{l}
\text { (equivolent } \\
\left\|\vec{x}-\vec{a}_{2}\right\|^{2}=d_{2}^{2} \\
\left\|\vec{x}-\vec{a}_{3}\right\|^{2}=d_{3}^{2} \\
\text { Tolve for } \vec{x} \quad \tau \text { measured (known) }
\end{array} \tag{1}
\end{align*}
$$

Trilateration: Finding position from distances
$0\left\|\vec{x}-\vec{a}_{1}\right\|^{2}=d_{1}^{2}$
(2) $\quad\left\|\vec{x}-\vec{a}_{2}\right\|^{2}=d_{2}^{2}$
(3) $\quad\left\|\vec{x}-\vec{a}_{3}\right\|^{2}=d_{3}^{2}$

Here's a trick to make things linear:

(1) $\left(\vec{x}-\vec{a}_{1}\right)^{\top}\left(\vec{x}-\vec{a}_{1}\right)=d_{1}^{2}$
$\underbrace{\vec{x}^{\top} \vec{x}}-\underbrace{\vec{a}_{1}^{\top} \vec{x}-\vec{x}^{\top} \vec{a}_{1}}_{\vec{a}_{1}^{\top}}+\underbrace{\vec{a}_{1}}_{\overrightarrow{a_{1}} \vec{a}_{1}}=d_{1}^{2}$
All square terms are known/constants, so it's LINEAR wot \vec{x}
$\|\vec{x}\|^{2}-2 \vec{a}_{1}^{\top} \vec{x}+\left\|\overrightarrow{a_{1}}\right\|^{2}=d_{1}^{2}=c^{2} \tau_{1}^{2}$
(2) $\|\vec{x}\|^{2}-2 \vec{a}_{2}^{\top} \vec{x}+\left\|\vec{a}_{2}\right\|^{2}=c^{2} \tau_{2}^{2}$
(3) $\|\vec{x}\|^{2}-2 \vec{a}_{3}^{\top} \vec{x}+\left\|\vec{a}_{3}\right\|^{2}=c^{2} \tau_{3}^{2}$

Trilateration: Finding position from distances

(1) $\|\overrightarrow{\mathcal{L}}\|^{2}-2 \vec{a}_{1}^{T} \vec{x}+\left\|\vec{a}_{1}\right\|^{2}=C^{2} \tau_{1}^{2}$
(2) $\|\vec{\gamma}\|^{2}-2 \vec{a}_{2}^{T} \vec{x}+\left\|\vec{a}_{2}\right\|^{2}=C^{2} \tau_{2}^{2}$
(3) $\|\vec{x}\|^{2}-2 \vec{a}_{3}^{T} \vec{x}+\left\|\vec{a}_{3}\right\|^{2}=C^{2} \tau_{3}^{2}$

$$
\begin{aligned}
& \text { (2)-(1) }-2 \vec{a}_{2}^{+} \vec{x}+2 \vec{a}_{1}^{\top} \vec{x}+\underbrace{\left\|\vec{a}_{2}\right\|^{2}-\left\|\overrightarrow{a_{1}}\right\|^{2}}_{\text {will cancel if norms ore equal }}=c^{2}\left(\tau_{2}^{2}-\tau_{1}^{2}\right) \\
& 2\left(\vec{a}_{1}-\vec{a}_{2}\right)^{\top} \vec{x}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{2}\right\|^{-}+c^{2}\left(\tau_{2}^{2}-\tau_{1}^{2}\right)
\end{aligned}
$$

(3)-(1) $\quad 2\left(\vec{a}_{1}-\vec{a}_{3}\right)^{\top} \vec{x}=\left\|\overrightarrow{a_{1}}\right\|^{2}-\left\|\vec{a}_{3}\right\|^{2}+c^{2}\left(\tau_{3}^{2}-\tau_{1}\right)^{2}$

$$
\begin{aligned}
& d_{1}=\tau_{1} c \\
& d_{2}=\tau_{2} c \\
& d_{3}=\tau_{3} c
\end{aligned}
$$

Trilateration: Finding position from distances

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{a}}_{3}=\left[a_{31}, a_{32}\right]^{T} \\
& 2\left(\vec{a}_{1}-\vec{a}_{2}\right)^{T} \vec{x}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{2}\right\|^{2}+C^{2}\left(\tau_{2}^{2}-\tau_{1}^{2}\right) \\
& 2\left(\vec{a}_{1}-\vec{a}_{3}\right)^{T} \vec{x}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{3}\right\|^{2}+C^{2}\left(\tau_{3}^{2}-\tau_{1}^{2}\right) \\
& \left(\vec{a}_{1}-a_{2}\right)^{\top}=\left(\left[\begin{array}{l}
a_{11} \\
a_{12}
\end{array}\right]-\left[\begin{array}{l}
a_{21} \\
a_{22}
\end{array}\right]\right)^{\top}=\left[\begin{array}{ll}
a_{11}-a_{21} & a_{12}-a_{22}
\end{array}\right] \\
& \underbrace{\substack{d_{2}}}_{\overrightarrow{\boldsymbol{x}}} \underset{\overrightarrow{\boldsymbol{a}}_{2}=\left[a_{21}, a_{22}\right]^{T}}{\overrightarrow{d_{1}}=\left[a_{11}, a_{12}\right]^{]^{2}}} \\
& 2\left[\begin{array}{cc}
a_{11}-a_{21} & a_{12}-a_{22} \\
\underbrace{}_{\text {known }}-a_{31} & a_{12}-a_{32}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\hat{S o l v e}^{2}
\end{array}\right]=\underbrace{\left\|\vec{a}_{1}\right\|-\left\|\vec{a}_{3}\right\|^{2}-c^{2}\left(\tau_{3}^{2}-\tau_{1}\right)^{2}}_{\text {known constants }} \underbrace{\left\|\vec{a}_{1}\right\|^{2}-\| \vec{a}_{2}^{2}-c^{2}\left(\tau_{2}^{2}-\tau_{1}\right)} \begin{array}{l}
\| \\
\underbrace{}_{\text {kn }}
\end{array}] \\
& \text { solve with } \\
& \text { Gaussian } \\
& \text { elimination! }
\end{aligned}
$$

Trilateration: what if I don't have an atomic clock?

$$
\begin{aligned}
& 2\left(\vec{a}_{1}-\vec{a}_{2}\right)^{T} \vec{x}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{2}\right\|^{2}+C^{2}\left(\tau_{2}^{2}-\tau_{1}^{2}\right) \\
& 2\left(\vec{a}_{1}-\vec{a}_{3}\right)^{T} \vec{x}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{3}\right\|^{2}+C^{2}\left(\tau_{3}^{2}-\tau_{1}^{2}\right)
\end{aligned}
$$

$$
\vec{a}_{3}=\left[a_{31}, a_{32}\right]^{T}
$$

Problem - receiver clock is not synced to satellites!
τ_{1} is unknown, but $\Delta \tau_{2}=\tau_{2}-\tau_{1}$, and $\Delta \tau_{3}=\tau_{3}-\tau_{1}$ are known

Trilateration: what if I don't have an atomic clock?

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{a}}_{3}=\left[a_{31}, a_{32}\right]^{T} \\
& \left(\begin{array}{l}
2\left(\vec{a}_{1}-\vec{a}_{2}\right)^{T} \vec{x}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{2}\right\|^{2}+C^{2}\left(\tau_{2}^{2}-\tau_{1}^{2}\right) \\
2\left(\vec{a}_{1}-\vec{a}_{3}\right)^{T} \vec{x}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{3}\right\|^{2}+C^{2}\left(\tau_{3}^{2}-\tau_{1}^{2}\right) \\
\rightarrow 2\left(\vec{a}_{1}-\vec{a}_{2}\right)^{\top} \vec{x}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{2}\right\|^{2}+c^{2}\left(\tau_{2}-\tau_{1}\right)\left(\tau_{2}+\tau_{1}\right)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +c^{2} \underbrace{\tau_{2}-\tau_{1}})\left(\tau_{2}-\tau_{1}+2 \tau_{1}\right) \\
& \text { - but we still have this } \\
& \text { unknown!?? } \\
& \text { since it's unknown } \\
& \text { le's bring to LHS' } \\
& \tau_{\text {our phone doesn't }} \\
& \text { need an atomic } \\
& 2 \text { clock to measure } \\
& \text { this accurately! }
\end{aligned}
$$

Trilateration Multi-Lateration: add a $4^{\text {th }}$ satellite!

$$
\begin{aligned}
& \left.2\left(\vec{a}_{1}-\vec{a}_{2}\right)^{T} \vec{x}\right)-2 C^{2} \Delta \tau_{2} \tau_{1}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{2}\right\|^{2}+C^{2}\left(\Delta \tau_{2}\right)^{2} \quad \overrightarrow{\boldsymbol{a}}_{3}=\left[\boldsymbol{a}_{31}, \boldsymbol{a}_{32}\right]^{T} \\
& 2\left(\vec{a}_{1}-\vec{a}_{3}\right)^{T} \vec{x}-2 C^{2} \Delta \tau_{3} \tau_{1}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{3}\right\|^{2}+C^{2}\left(\Delta \tau_{3}\right)^{2} \\
& 2\left(\vec{a}_{1}-\vec{a}_{4}\right)^{7} \vec{x}-2 C^{2} \Delta \tau_{4} \tau_{1}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{4}\right\|^{2}+C^{2}\left(\Delta \tau_{4}\right)^{2} \\
& \uparrow_{\text {solve }} \uparrow
\end{aligned}
$$

$$
\begin{aligned}
& 2\left[\begin{array}{lll}
a_{11}-a_{21} & a_{12}-a_{22} & -c^{2} \Delta \tau_{2} \\
a_{11}-a_{31} & a_{12}-a_{32} & -c^{2} \Delta \tau_{3} \\
a_{11}-a_{41} & a_{12}-a_{42} & -c^{2} \Delta \tau_{4}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\tau_{1}
\end{array}\right]=\left[\begin{array}{l}
\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{2}\right\|^{2}+c^{2}\left(\Delta \tau_{2}\right)^{2} \\
\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{3}\right\|^{2}+c^{2}\left(\Delta \tau_{3}\right)^{2} \\
\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{4}\right\|^{2}+c^{2}\left(\Delta \tau_{4}\right)^{2}
\end{array}\right]
\end{aligned}
$$

Multi-Lateration: many satellites!

$$
\begin{aligned}
& 2\left(\vec{a}_{1}-\vec{a}_{2}\right)^{T} \vec{x}-2 C^{2} \Delta \tau_{2} \tau_{1}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{2}\right\|^{2}+C^{2}\left(\Delta \tau_{2}\right)^{2} \\
& 2\left(\vec{a}_{1}-\vec{a}_{3}\right)^{T} \vec{x}-2 C^{2} \Delta \tau_{3} \tau_{1}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{3}\right\|^{2}+C^{2}\left(\Delta \tau_{3}\right)^{2} \\
& 2\left(\vec{a}_{1}-\vec{a}_{4}\right)^{T} \vec{x}-2 C^{2} \Delta \tau_{4} \tau_{1}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{4}\right\|^{2}+C^{2}\left(\Delta \tau_{4}\right)^{2} \\
& 2\left(\vec{a}_{1}-\vec{a}_{5}\right)^{T} \vec{x}-2 C^{2} \Delta \tau_{5} \tau_{1}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{5}\right\|^{2}+C^{2}\left(\Delta \tau_{5}\right)^{2}
\end{aligned}
$$

More equations than unknowns!

Over-determined

Q: What if equations are inconsistent due to noise?
A: Find closest solution with Least-Squares!

Overdetermined Linear Equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}=b_{3}
\end{aligned}
$$

Q: When is there a solution?
A: When $\vec{b} \in \operatorname{Span}\{\operatorname{cols}$ of $A\}$

Inconsistent Linear Equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1}+e_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}+e_{2} \\
& a_{31} x_{1}+a_{32} x_{2}=b_{3}+e_{3} \\
& \square=\vec{x}+\vec{b}+\vec{e}
\end{aligned}
$$

Q: What if equations are inconsistent due to noise?
A: Find closest solution with Least-Squares!

Towards the Least Squares Algorithm

Fact:
We have measurements: \vec{b}
We have a model that : $A \vec{x}=\vec{b}$
Problem:
But $A \vec{x}=\vec{b}$ does not have a solution!
What to do?
Want to find \hat{x}, such that $A \hat{x}$ is the closest to \vec{b}

Example: a scalar problem

$\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right] x=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$, one unknown, two equations

Solution:
find \hat{x} that has the smallest error
$\|\vec{e}\|=\|\vec{a} \hat{x}-\vec{b}\| \leq\|\vec{a} x-\vec{b}\|$
Theorem:
shortest distance between a point and a line is the orthogonal projection

Projections

Theorem:

shortest distance between a point and a line is the orthogonal projection

Proof:
Pythagoras: $(P R)^{2}=(P Q)^{2}+(Q R)^{2}$

Projections
find \hat{x} that has the smallest error
$\|\vec{e}\|=\|\vec{a} \hat{x}-\hat{b}\| \leq\|\vec{a} x-\vec{b}\|$
Need to find the orthogonal projection!
We know $\vec{e} \perp \hat{b}, \vec{e} \perp \stackrel{\rightharpoonup}{a}$ orthogonal!

$$
\left.\begin{aligned}
& \langle\vec{e}, \vec{a}\rangle=0 \\
& \langle\vec{b}-\hat{b}, \vec{a}\rangle=0 \\
& \langle\vec{b}, \vec{a}\rangle-\langle\hat{b}, \vec{a}\rangle=0 \\
& \langle\vec{b}, \vec{a}\rangle=\langle\hat{b}, \vec{a}\rangle \\
& \langle\vec{b}, \vec{a}\rangle=\langle\vec{a} \hat{x}, \vec{a}\rangle \\
& \langle\vec{b}, \vec{a}\rangle=\hat{x}\langle\vec{a}, \vec{a}\rangle
\end{aligned} \right\rvert\, \begin{gathered}
\langle\vec{b}, \vec{a}\rangle=\hat{x}\|\vec{a}\|^{2} \\
\hat{x}=\frac{\langle\vec{b}, \vec{a}\rangle}{\|\vec{a}\|^{2}} \\
\hat{b}=\vec{a} \hat{x}=\frac{\langle\vec{b}, \vec{a}\rangle}{\|\vec{a}\|^{2}} \vec{a}
\end{gathered} \rightarrow \stackrel{\vec{b}^{\top} \vec{a}}{\vec{a}^{\top} \vec{a}} \vec{a}
$$

Orthogonal Projections

Given vectors \vec{a}, \vec{b}, we say that the orthogonal projection of \vec{b} onto \vec{a} is:

$$
\operatorname{Proj}_{\vec{a}}(\vec{b})=\frac{\vec{a}^{T} \vec{b}}{\|\vec{a}\|^{2}} \vec{a}
$$

Example

-What's the projection onto x axis? Y axis?

