

If she loves you more each and every day, by linear regression she hated you before you met.

EECS 16A

Least Squares Algorithm

Inner Product

- Provide a measure of "similarity" between vectors
- (Euclidian) inner product is also called 'dot product'

For two vectors $\vec{x}, \vec{y} \in \mathbb{R}^{n}$, the inner product is:

$$
<\vec{x}, \vec{y}>=\vec{x}^{\boldsymbol{T}} \overrightarrow{\boldsymbol{y}}
$$

Norm • Provides a measure of "length" of elements in the vector space

$$
\|\vec{v}\|=\sqrt{\langle\vec{v}, \vec{v}\rangle}
$$

The cross-correlation between vectors \vec{r} and \vec{s} is:

$$
\operatorname{corr}_{\vec{r}}(\vec{s})[k]=\langle r[n], s[n-k]\rangle=\sum_{n=-\infty}^{\infty} r[n] s[n-k]
$$

How to solve for GPS coordinates:

(1) Identify which satellites are 'on'
(2) Find the delay/shift for each satellite
(3) Use shifts to find distances to each satellite
(4) Triputeration to find my coordinates Multilateration

Friend: Come over!
Me: I have no idea where i am and all I have is this recording that sounds like trash Friend: I have chocolate :)

Last time: Multi-Lateration

$$
\begin{aligned}
& 2\left(\vec{a}_{1}-\vec{a}_{2}\right)^{T} \vec{x}-2 C^{2} \Delta \tau_{2} \tau_{1}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{2}\right\|^{2}+C^{2}\left(\Delta \tau_{2}\right)^{2} \\
& 2\left(\vec{a}_{1}-\vec{a}_{3}\right)^{2} \vec{x}-2 C^{2} \Delta \tau_{3} \tau_{1}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{3}\right\|^{2}+C^{2}\left(\Delta \tau_{3}\right)^{2} \\
& 2\left(\vec{a}_{1}-\vec{a}_{4}\right)^{T} \vec{x}-2 C^{2} \Delta \tau_{4} \tau_{1}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{4}\right\|^{2}+C^{2}\left(\Delta \tau_{4}\right)^{2} \\
& 2\left(\vec{a}_{1}-\vec{a}_{5}\right)^{T} \vec{x}-2 C^{2} \Delta \tau_{5} \tau_{1}=\left\|\vec{a}_{1}\right\|^{2}-\left\|\vec{a}_{5}\right\|^{2}+C^{2}\left(\Delta \tau_{5}\right)^{2}
\end{aligned}
$$

More equations than unknowns!

Over-determined

Q: What if equations are inconsistent due to noise?
A: Find closest solution with Least-Squares!

Last time: Orthogonal projections

finding the component along a particular direction

- key idea in Machine learning, Signal processing
$\operatorname{Span}\{\vec{a}\}$
Given vectors \vec{a}, \vec{b}, we say that the orthogonal projection of \vec{b} onto \vec{a} is:

$$
\operatorname{Proj}_{\vec{a}}(\vec{b})=\frac{\vec{a}^{T} \vec{b}}{\|\vec{a}\|^{2}} \vec{a}
$$

find \hat{x} that has the smallest error $\|\vec{e}\|=\|\vec{a} \hat{x}-\vec{b}\|$

Least squares in 2D
3 equations 2 unknowns:

$$
\begin{gathered}
A \quad \vec{x} \quad \vec{b} \\
{\left[\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array} \vec{a}_{a_{12}}^{a_{22}}\left[\begin{array}{l}
x_{1} \\
a_{32}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
x_{2}
\end{array}\right]=\right.\text { +error }}
\end{gathered}
$$

Find \hat{x} that is a solution and has smallest error:

$$
\|\vec{e}\|=\|A \hat{x}-\vec{b}\|
$$

solid will be orthogonal proj. onto colspace (A)

$$
\overrightarrow{\mathrm{b}} \notin \operatorname{colspace}(A) \rightarrow \begin{gathered}
\text { No solution! } \\
\\
\text { (inconsistent) }
\end{gathered}
$$

Least squares in many-D
Find $\hat{b}=A \hat{x}^{\text {Estimate that min.error }}\left[\begin{array}{ccc}1 & 1 & 1\end{array}\right] \quad \tau$ column view of $A \in \mathbb{R}^{M \times N}$ τ closest measurements that fit model

$$
\vec{e}=\vec{b}-\hat{b}
$$

The error vector will be $\perp \operatorname{col}(A)$, so $\left\langle\vec{a}_{i}, \vec{e}\right\rangle=0$
$\tau_{\text {for all i }}$

$$
\begin{aligned}
& \left\langle\vec{a}_{i}, \vec{b}-\hat{b}\right\rangle=0 \\
& \vec{a}_{i}^{\top}(\vec{b}-\hat{b})=0 \quad \rightarrow A^{\top} A \hat{x}=A^{\top} \vec{b} \\
& {\left[\begin{array}{c}
-\vec{a}_{1}^{\top}- \\
-\vec{a}_{2}^{\top}- \\
-\dot{\vec{a}}_{w}^{\top}-
\end{array}\right]\left[\begin{array}{c}
1 \\
\vec{b}-\vec{b} \\
1
\end{array}\right]=\overrightarrow{0} \quad \hat{x}=\left(A^{\top} A\right)^{\top} A^{\top}} \\
& A^{\top}(\vec{b}-A \hat{x})=\overrightarrow{0} \\
& \text { Least squares } \\
& \text { solution! } \\
& \hat{b}=A\left(A^{\top} A\right)^{-1} A^{\top} \vec{b} \\
& \hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} \hat{b} \\
& \begin{array}{l}
\text { Least squares } \\
\text { solution' }
\end{array}
\end{aligned}
$$

if A full rank, then $A^{\top} A$ invertible

Least Squares Algorithm

$$
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

Does it fit with the 1D least squares solution we derived earlier??

$$
\begin{gathered}
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{b} \\
\hat{x}=\frac{-\vec{a} T \vec{b}}{\|\vec{a}\|^{2}} \begin{array}{l}
\text { Least squares } \\
\text { solution! }
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& \text { crack } \\
& \begin{aligned}
\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}=\left(\left[a_{1} a_{2}\right]\left[a_{a_{2}} a^{-1}\right)^{-1} \vec{a}^{\top} \vec{b}\right. & =\left(a_{1}^{\left.a_{1}^{2}+a_{2}\right)^{-1} \vec{a}^{\top} \vec{b}}\right. \\
& =\left(a^{\top} \vec{b} /\|\vec{a}\|^{2} \checkmark\right.
\end{aligned}
\end{aligned}
$$

A vector \perp cols (A) is also \perp to anything else in colspace(A)
Theorem: Consider matrix A, and $\vec{y} \in \operatorname{colspace}(A)$
If $\exists \vec{z}$, such that $\left\langle\vec{z}, \vec{a}_{i}\right\rangle=0$, then $\langle\vec{z}, \vec{y}\rangle=0$.

Theorem: Consider matrix A, vector $\vec{y} \in \operatorname{colspace}(A)$
Then, consider vector \vec{z}
$\left.\begin{array}{r}\left\langle\vec{z}_{1}, \vec{a}_{1}\right\rangle=0 \\ \left\langle z_{1}, \vec{a}_{2}\right\rangle=0 \\ \vdots \\ \left\langle\vec{z}_{1}, \vec{a}_{n}\right\rangle=0\end{array}\right\} \vec{z}$ is orthogonal to all vectors in cols pace (A)

$$
\langle\vec{z}, \vec{y}\rangle=0
$$

Proof: know $\vec{y} \in \operatorname{colspace}(A)$, so it's a lin. combo. of cols:

$$
A=\left[\begin{array}{ccc}
\prod_{m \times n} & 1 & \vec{a}_{n} \\
\vec{a}_{1} & \vec{a}_{2} & -\vec{a}_{n} \\
1 & 1 & 1
\end{array}\right]
$$

col view

Least squares: Example 1

$$
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

$$
\begin{aligned}
A \vec{x} & =\vec{b} \\
{\left[\begin{array}{l}
2 \\
1
\end{array}\right][x] } & =\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

$\left.\begin{array}{ll}2 x=1 \rightarrow & x=1 \\ 1 x=1 & x=0.5\end{array}\right\} ? ?$ Inconsistent
Try Gaussian Elimination: $\left[\begin{array}{lll}2 & 1 \\ 1 & 1\end{array}\right] \rightarrow\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 011\end{array}\right]$
Find Least Squares Sol in:

$$
\begin{aligned}
\hat{x} & =\left(A^{\top} A\right)^{-1} A^{\top} \vec{b} \\
& =\left(\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)^{-1}\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =(5)^{-1}(3)=\frac{3}{5}
\end{aligned}
$$

$$
\begin{aligned}
\hat{b} & =A \hat{x} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] 3 / 5 \\
& =\left[\begin{array}{c}
6 / 5 \\
3 / 5
\end{array}\right]
\end{aligned}
$$

Least squares: Example 2

$$
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

$$
\begin{array}{cc}
A & \vec{x} \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=} & \vec{b} \\
{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]}
\end{array}
$$

$$
x_{1}=1
$$

$$
\left.\begin{array}{l}
x_{2}=2 \\
x_{2}=3
\end{array}\right\} \text { inconsistent! }
$$

Least squares sol' n :

$$
\begin{aligned}
\left(A^{\top} A\right)^{-1} A^{\top} b & =\left(\left[\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]\right)^{-1}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right. \\
& =\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
1 \\
5
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
1 \\
5
\end{array}\right]=\left[\begin{array}{l}
1 \\
2.5
\end{array}\right]
\end{aligned}
$$

Example 3: Linear Regression

$$
\vec{e}=A \hat{p}-\vec{y}
$$

fit model paras
Model: $\quad m=\stackrel{\downarrow}{\alpha} t+\stackrel{\downarrow}{\beta}$ (unknown)
Known: Waller: $\left(t_{1}, m_{1}\right)$
Sahai: $\left(t_{2}, m_{2}\right)$
Alon: $\left(t_{3}, m_{3}\right)$
Stojanovic: $\left(t_{4}, m_{4}\right)$ known Ranade: $\left(t_{5}, m_{5}\right)$

$$
\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}
$$

BUT, not everything fits to a line!?!

"Using a term like nonlinear science is like referring to the bulk of zoology as the study of non-elephant animals." - S. Ulam

Example 4: Regression
planet
Gauss found Ceres by using Kepler's laws:
Model: $\quad a x^{2}+b y^{2}+c x y+d x+\stackrel{\downarrow}{e} y=1$
Q: Is this a linear fit? $\underset{\sim}{\uparrow}$ known!
A: Yes!

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
x_{1}^{2} & y_{1}^{2} & x_{1} y_{1} & x_{1} & y_{1} \\
x_{2}^{2} & y_{2}^{2} & x_{2} y_{2} & x_{2} & y_{2} \\
x_{3}^{2} & y_{3}^{2} & x_{3} y_{3} & x_{3} & y_{3} \\
x_{N}^{2} & \vdots & y_{N}^{2} & x_{N} y_{N} & x_{N} \\
A N
\end{array}\right]} \\
A \\
\hat{A} \\
\hat{p}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{y}
\end{gathered}
$$

Least-squares is building block for all of signal processing/machine learning/pattern matching

Example 5: Exponential Regression

Model: $y=c e^{a x}$
Q : Is this a linear fit?
A: No! But, can be made linear.....
New Model: $\log (y)=\log c+a x=b+a x$
Knowns: $\left(x_{1}, \log \left(y_{1}\right)\right)\left(x_{2}, \log \left(y_{2}\right)\right) . .\left(x_{N}, \log \left(y_{N}\right)\right)$
Unknowns: $\vec{p}=\left[\begin{array}{ll}a & b\end{array}\right]^{T}$
$\left[\begin{array}{cc}x_{1} & 1 \\ x_{2} & 1 \\ \vdots & \vdots \\ x_{N} & 1\end{array}\right]\left[\begin{array}{c}\vec{p} \\ b \\ b\end{array}\left[\begin{array}{c}\vec{y} \\ \log y_{1} \\ \log y_{2} \\ \vdots \\ \log y_{N}\end{array}\right] \begin{array}{|c}\hat{p}=\left(A^{T} A\right)^{-1} A^{T} \vec{y} \\ \hat{\boldsymbol{c}}=e^{\hat{b}}\end{array}\right.$

Ditto; logarithmic scale

Example 6: Model Order Selection

Model: $y=a x+b$

Example 6: Model Order Selection

Model: $y=a x^{2}+b x+c$

Example 6: Model Order Selection

Model: $y=a x^{10}+b x^{9}+c x^{8}+d x^{7}+e x^{6}+f x^{5}+g x^{4}+h x^{3}+i x^{2}$

Example 6: Model Order Selection

