y = mx + b

Is My Favorite One-Liner

EECS 16A More Least Squares Given vectors \vec{a}, \vec{b} , we say that the **orthogonal projection** of \vec{b} onto \vec{a} is:

à

11 × 11 ×

$$\operatorname{Proj}_{\vec{a}}(\vec{b}) = \frac{\vec{a}^T \vec{b}}{\|\vec{a}\|^2} \vec{a}$$

Least squares solution to an overdetermined problem:

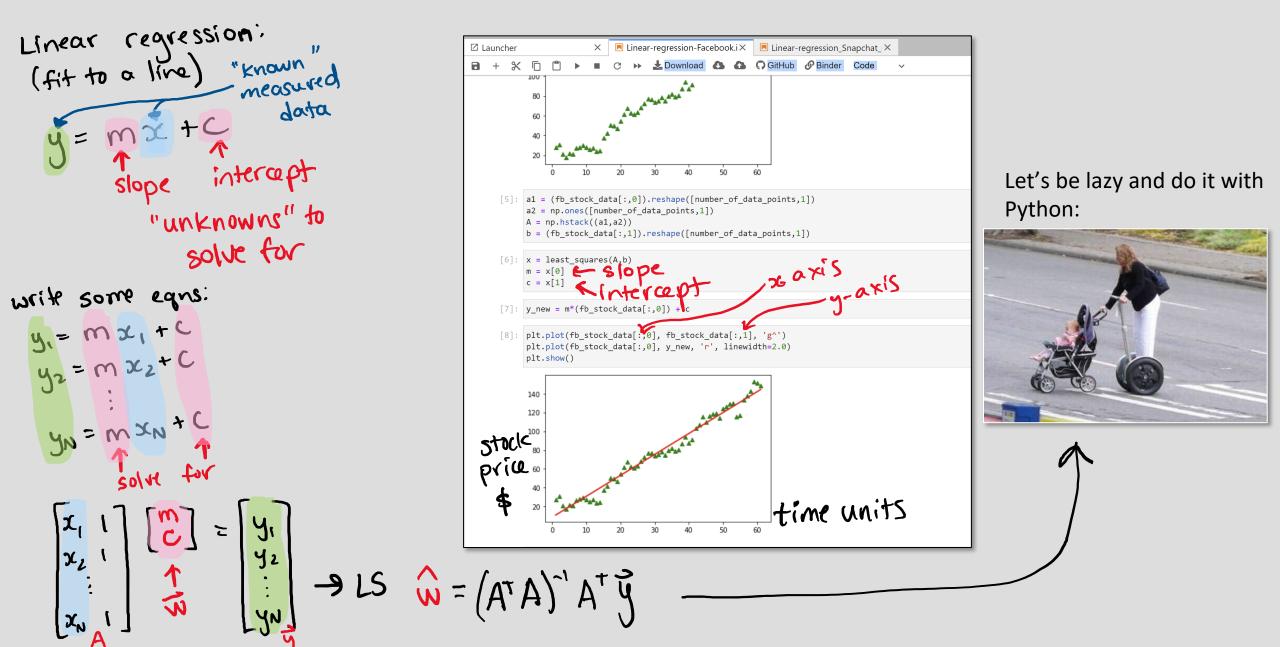
$$\hat{x} = (A^T A)^{-1} A^T \vec{b}$$

e

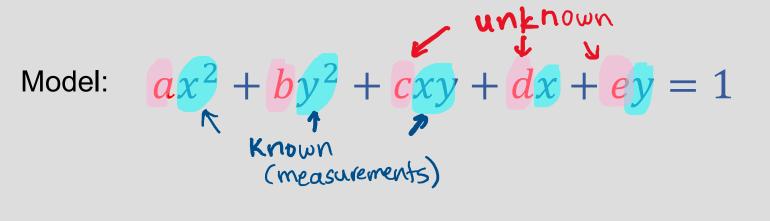
colspace(A)

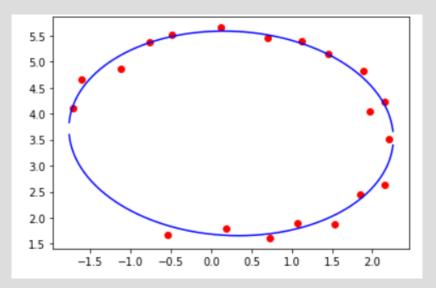
 \vec{a}_2

Demo: fitting Facebook stock data to a line



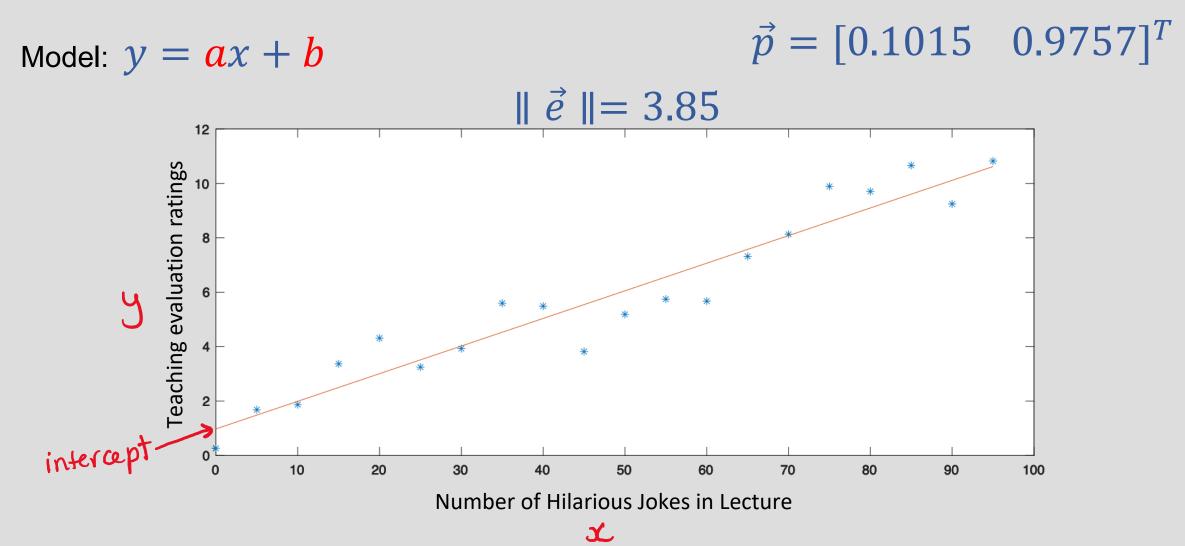
Fitting to non-linear curves can be a linear problem!





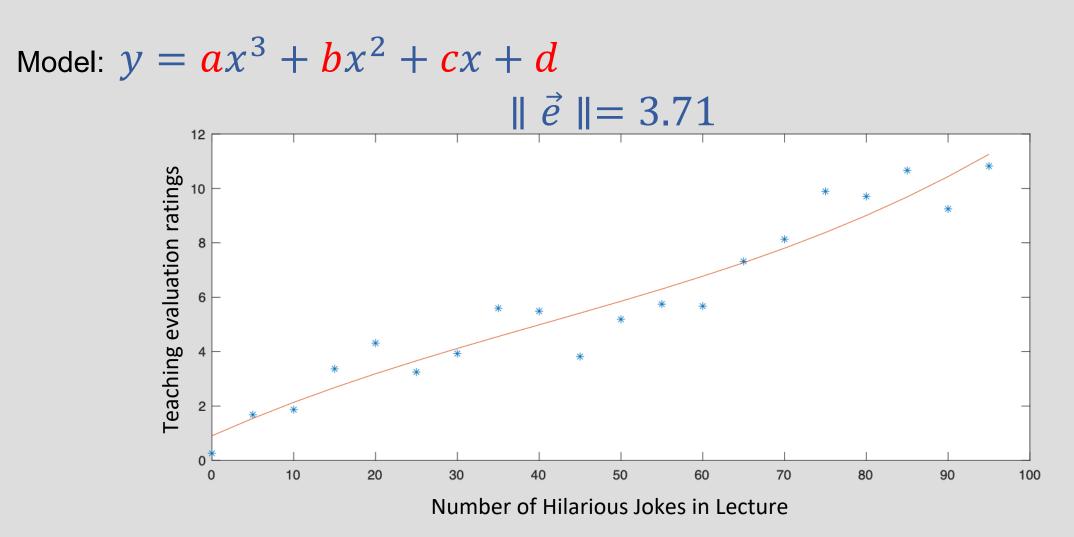
Example: Over Fitting

• Consider noisy measurements of y = 0.1x + 1:



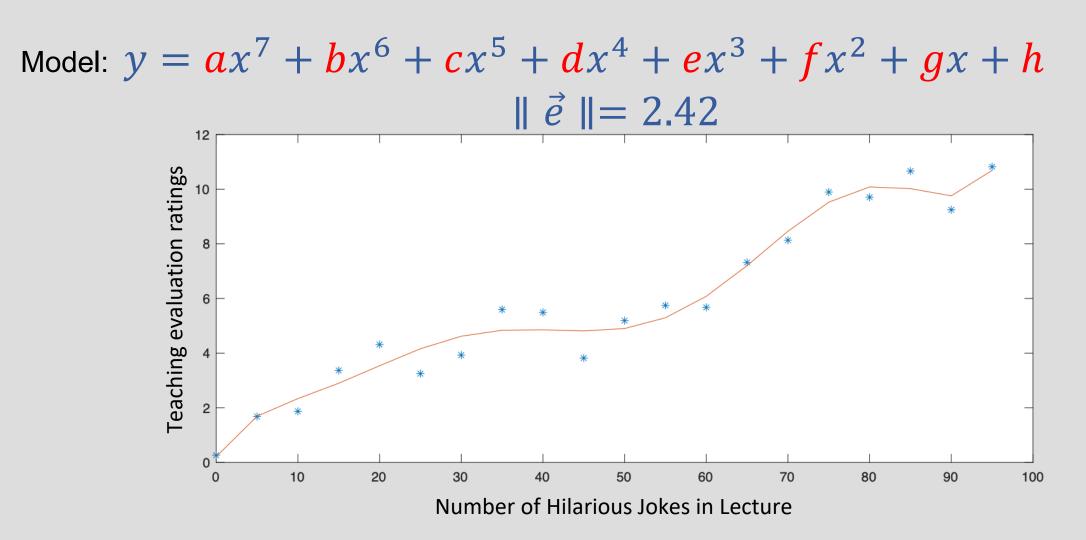
Example: Over Fitting

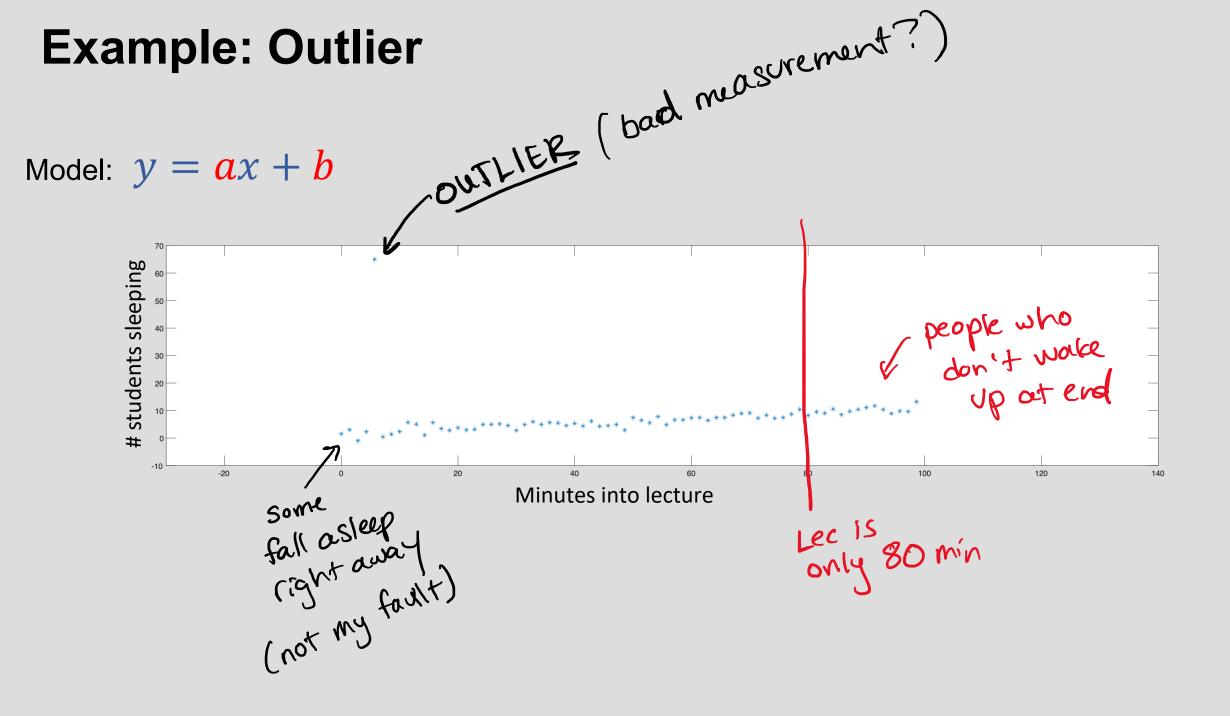
• Consider noisy measurements of y = 0.1x + 1:



Example: Over Fitting

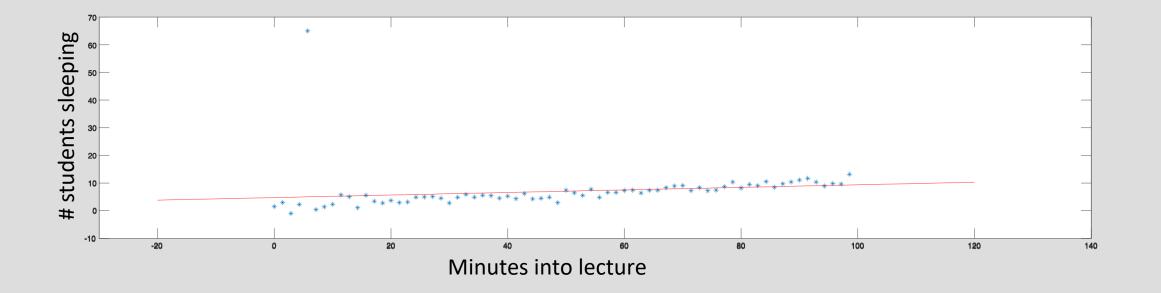
• Consider noisy measurements of y = 0.1x + 1:





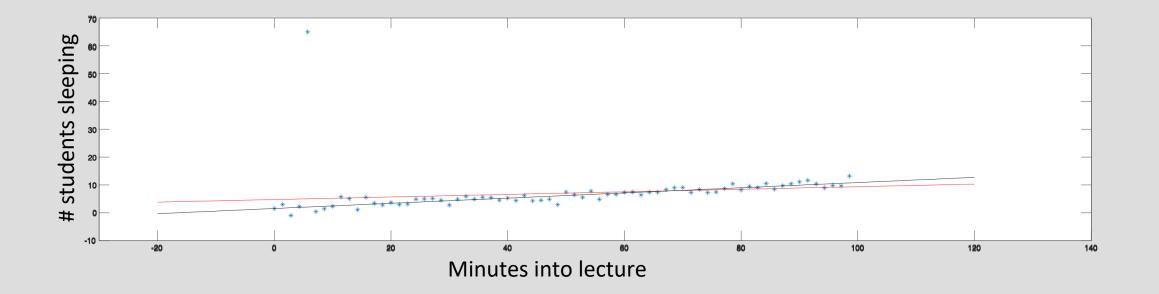
Example: Outlier

Model: y = ax + b



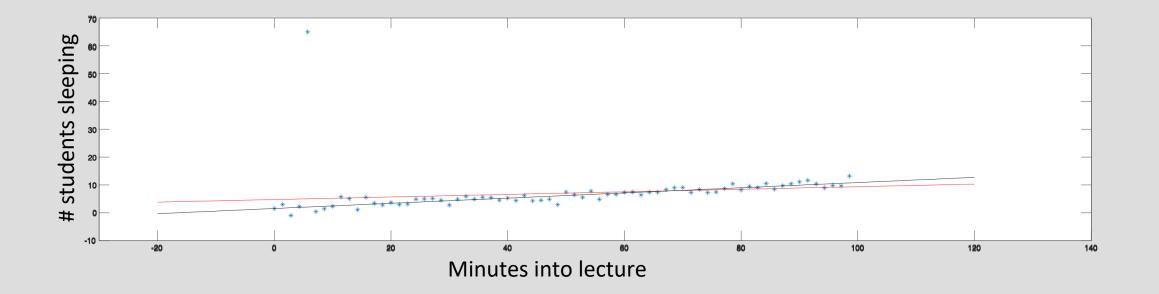
Example: Outlier

Model: y = ax + b



Example: Outlier

Model: y = ax + b

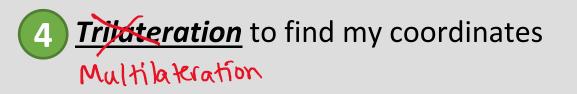


How to solve for GPS coordinates:

Identify which satellites are 'on'

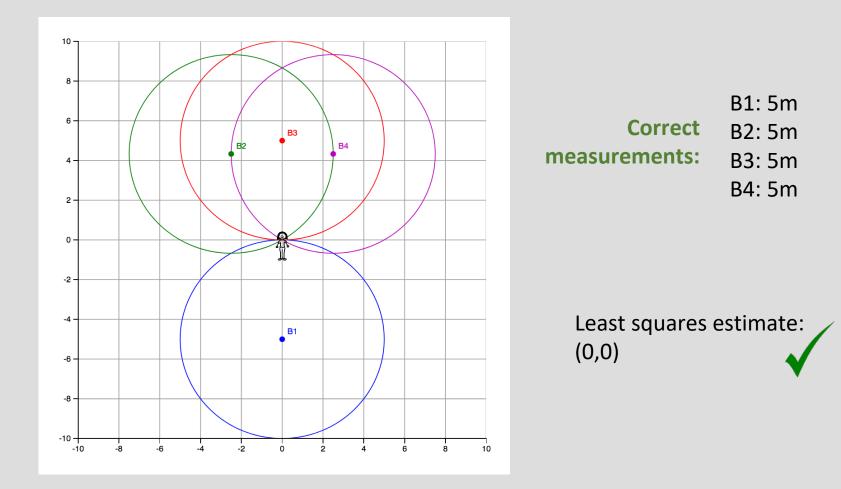
2 Find the <u>delay/shift</u> for each satellite

Use shifts to find <u>distances</u> to each satellite

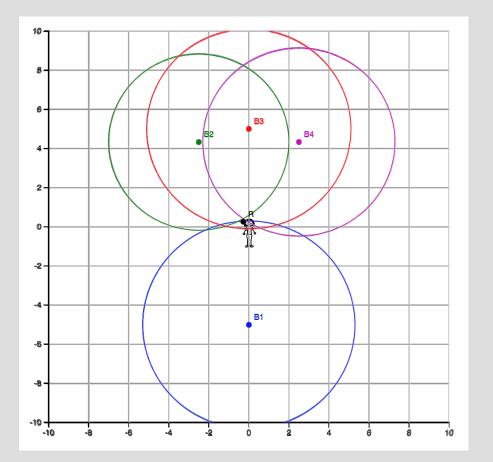




Example: Multi-lateration with no noise \rightarrow unique solution



Example: Multi-lateration with random noise

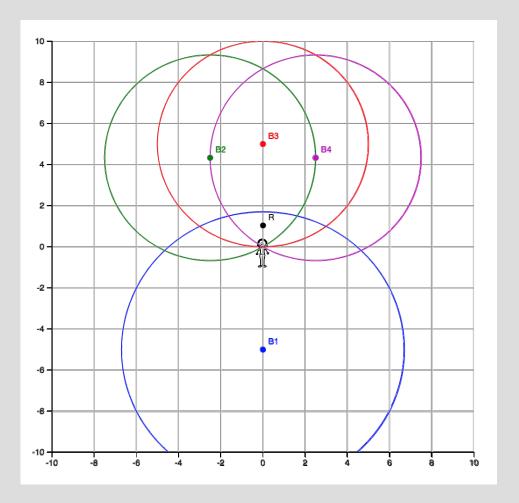


	B1: 5.3m
All measurements	B2: 4.5m
have error:	B3: 5.1m
	B4: 4.8m

Least squares estimate: (-0.28,0.26)

Estimate has some error, but will get smaller with more measurements (if error is random)

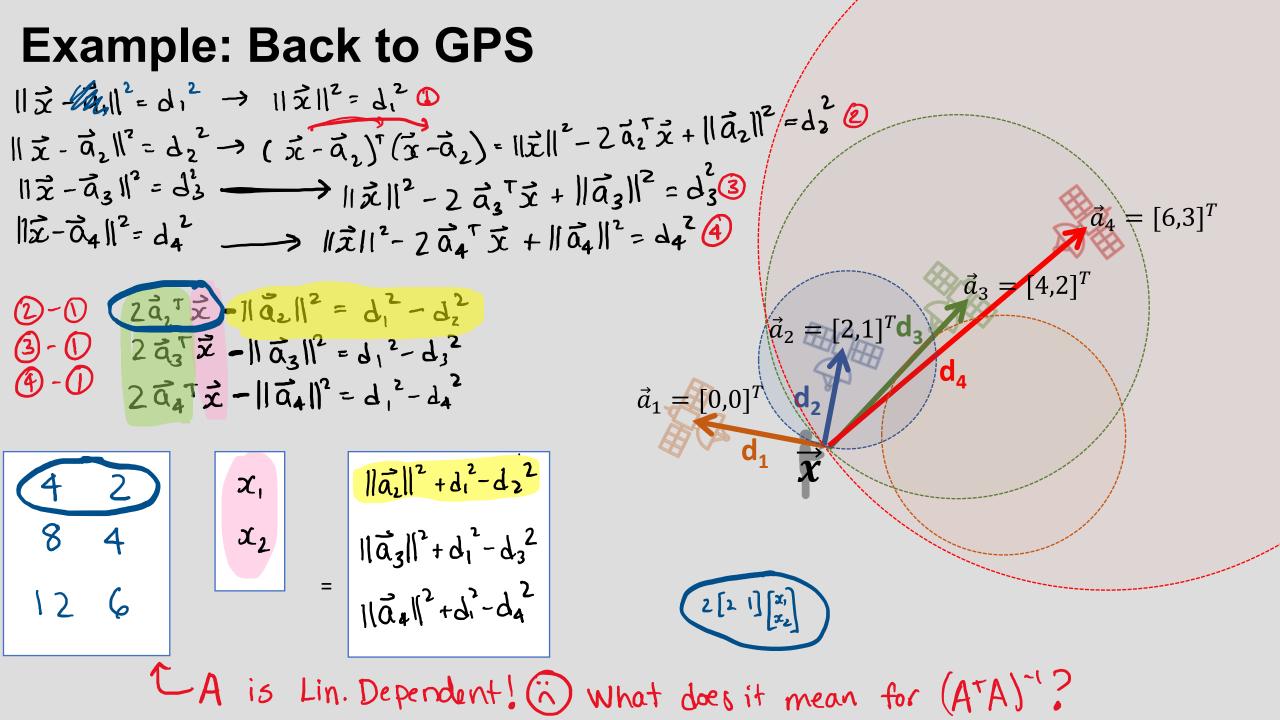
Example: Multi-lateration with *not* random noise



	B1: 6.8m
All measurements	B2: 5m
have error:	B3: 5m
	B4: 5m

Least squares estimate: (0,1.04)

Error is not spread evenly (random), 3 measurements were correct, 1 wrong



$$A^{T}A = \begin{bmatrix} 4 & 8 & 12 \\ 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 8 & 4 \\ 12 & 6 \end{bmatrix} = \begin{bmatrix} 224 & 112 \\ 112 & 56 \end{bmatrix} \rightarrow \frac{1}{5c} \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}$$

$$col \ 1 = 2 \ col \ 2$$

$$Lin \ Dependent!$$
No inverse exists
$$dct \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}$$

$$dct \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}$$

$$dct \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}$$

$$dct \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}$$

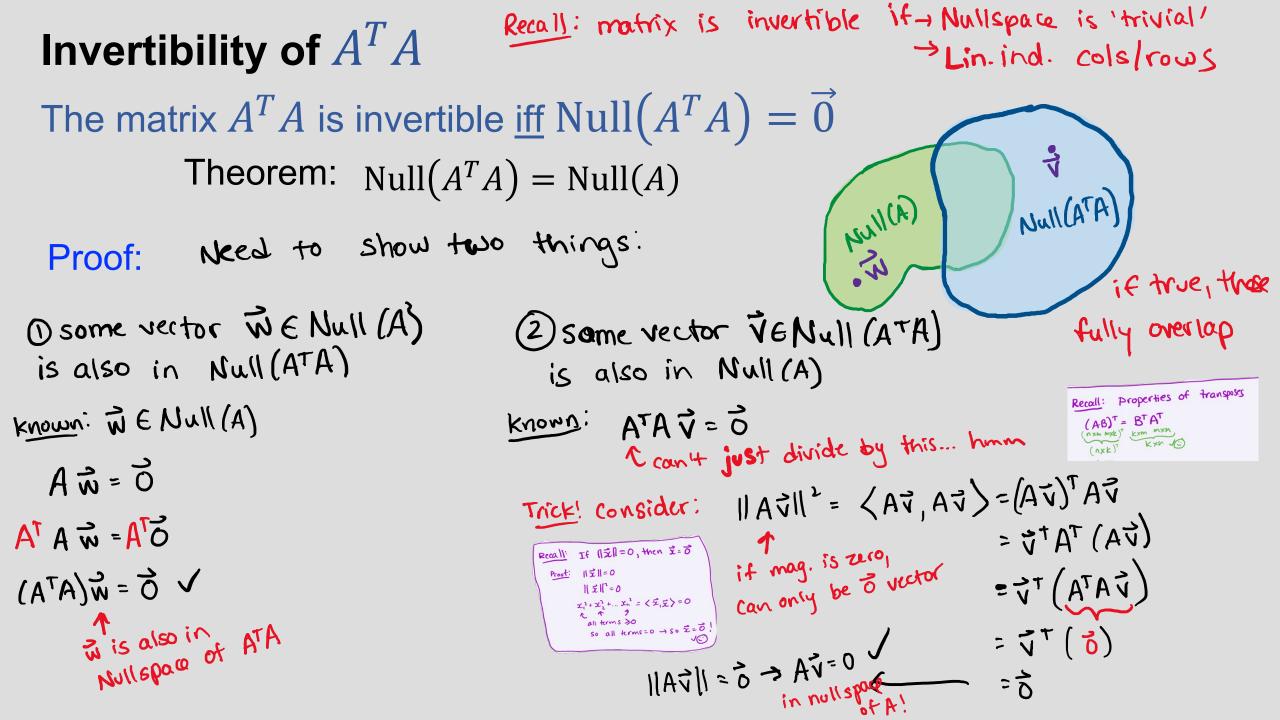
$$dct \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}$$

$$dct \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix} \rightarrow 4 - 4 = 0$$

$$\int p = (A^{T}A)^{-1}A^{T}y^{T}$$

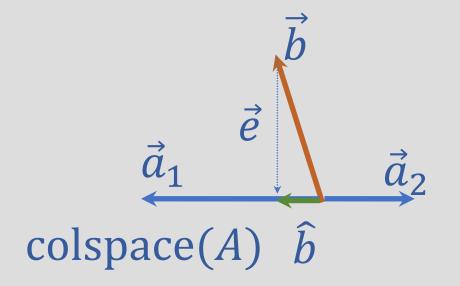
$$A \ is \ Lin \ Dependent!$$

$$(a) \ What \ dces \ it \ mean \ for \ (A^{T}A)^{-1}?$$



Invertibility of $A^T A$

• What if $A^T A$ is not invertible



$$A^T A \hat{x} = A^T \vec{b}$$

A: \hat{x} will have infinite solutions with the same $\vec{e} = A\hat{x} - \vec{b}$

EECS16A: we're do course evaluations now

If over 80% of the class fill outs the official course evaluation for this class (deadline of May 7), we will award 2 bonus points to everyone in the course (2 bonus points out of a total of 300 course points).

course-evaluations.berkeley.edu