$$
\frac{y=m x+b}{\text { Is My Favorite }} \begin{aligned}
& \text { One-Liner }
\end{aligned}
$$

EECS 16A More Least Squares

Given vectors \vec{a}, \vec{b}, we say that the orthogonal projection of \vec{b} onto \vec{a} is:
$\operatorname{Proj}_{\vec{a}}(\vec{b})=\frac{\vec{a}^{T} \vec{b}}{\|\vec{a}\|^{2}} \vec{a}$

Least squares solution to an overdetermined problem:

$$
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

Demo: fitting Facebook stock data to a line
Linear regression:
(fit to a line) "known"

$$
y^{\prime}=m x+c \text { fit to a line) "known } \begin{aligned}
& \text { measured } \\
& \text { data }
\end{aligned}
$$

slope intercept
"unknowns" to solve for
write some eqns:

$$
\begin{aligned}
& y_{1}=m x_{1}+c \\
& y_{2}=m x_{2}+c \\
& \vdots \\
& y_{N}=m x_{N}+c \\
& \uparrow \\
& \text { solve for } \\
& {\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots \\
x_{N} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
c
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right] \rightarrow L S}
\end{aligned}
$$

Let's be lazy and do it with Python:

time units
$\hat{w}=\left(A^{\top} A\right)^{-1} A^{+} \vec{y}$

Fitting to non-linear curves can be a linear problem!

Model:

Example: Over Fitting

- Consider noisy measurements of $y=0.1 x+1$:
Model: $y=a x+b$

$$
\vec{p}=\left[\begin{array}{ll}
0.1015 & 0.9757
\end{array}\right]^{T}
$$

$$
\|\vec{e}\|=3.85
$$

Example: Over Fitting

- Consider noisy measurements of $y=0.1 x+1$:

Example: Over Fitting

- Consider noisy measurements of $y=0.1 x+1$:

```
Model: y =ax 
| \vec{e |= 2.42}
```


Example: Outlier

Model:

$$
\begin{aligned}
& y=a x+b \\
& \text { OUTLER (bad measurement?) } \\
& \text { people who } \\
& \text { don't wake } \\
& \text { up at end } \\
& \text { Le is } \\
& \text { only } 80 \mathrm{~min}
\end{aligned}
$$

Example: Outlier

Model: $y=a x+b$

Example: Outlier

Model: $y=a x+b$

Example: Outlier

Model: $y=a x+b$

How to solve for GPS coordinates:

1. Identify which satellites are 'on'
(2) Find the delay/shift for each satellite
(3) Use shifts to find distances to each satellite
(4) Irimateration to find my coordinates Multilateration

Friend: Come over!
Me: I have no idea where i am and all I have is this recording that sounds like trash Friend: I have chocolate $)$

Example: Multi-lateration with no noise \rightarrow unique solution

31: 5 m
Correct B2:5m
measurements: $B 3: 5 \mathrm{~m}$
B4: 5m

Least squares estimate:
$(0,0)$

Example: Multi-lateration with random noise

B1: 5.3 m
All measurements $B 2: 4.5 \mathrm{~m}$
have error: B3: 5.1 m
B4: 4.8 m

Least squares estimate:
(-0.28,0.26)
Estimate has some error, but will get smaller with more measurements (if error is random)

Example: Multi-lateration with not random noise

B1: 6.8 m
All measurements
B2: 5 m
have error: B3: 5 m
B4: 5 m

Least squares estimate:
$(0,1.04)$
Error is not spread evenly (random), 3 measurements were correct, 1 wrong

Example: Back to GPS

$$
\begin{aligned}
& \left\|\vec{x}-\& \vec{x}_{u}\right\|^{2}=d_{1}{ }^{2} \rightarrow\|\vec{x}\|^{2}=d_{1}{ }^{2} \text { (1) } \\
& \left\|\vec{x}-\vec{a}_{2}\right\|^{2}=d_{2}^{2} \rightarrow\left(\vec{x}-\overrightarrow{a_{2}}\right)^{\top}\left(\vec{x}-\vec{a} a_{2}\right)=\|\vec{x}\|^{2}-2 \vec{a}_{2}^{\top} \vec{x}+\left\|\vec{a}_{2}\right\|^{2}=d_{2}^{2} \text { (2) } \\
& \left\|\vec{x}-\vec{a}_{3}\right\|^{2}=d_{3}^{2} \longrightarrow\|\vec{x}\|^{2}-2 \vec{a}_{3}^{\top} \vec{x}+\left\|\vec{a}_{3}\right\|^{2}=d_{3}^{2}(3) \\
& \left\|\vec{x}-\vec{a}_{4}\right\|^{2}=d_{4}^{2} \longrightarrow\|\vec{x}\|^{2}-2 \vec{a}_{4}^{\top} \vec{x}+\left\|\vec{a}_{4}\right\|^{2}=d_{4}^{2} \text { (4) } \\
& \text { (2)-(1) } 2 \vec{a}_{2}^{\top} \vec{x}-\left\|\vec{a}_{2}\right\|^{2}=d_{1}^{2}-d_{2}^{2} \\
& \text { (3) - (1) } 2 \vec{a}_{3}^{\top} \vec{x}-\left\|\vec{a}_{3}\right\|^{2}=d_{1}{ }^{2}-d_{3}{ }^{2} \\
& \text { (4) - (1) } 2 \vec{a}_{4}^{\top} \vec{x}-\left\|\vec{a}_{4}\right\|^{2}=d_{1}{ }^{2}-d_{4}{ }^{2} \\
& \begin{array}{ll}
4 & 2 \\
8 & 4 \\
12 & 6
\end{array}=\begin{array}{l}
x_{1} \\
x_{2}
\end{array}=\begin{array}{l}
\left\|\vec{a}_{2}\right\|^{2}+d_{1}^{2}-d_{2}^{2} \\
\left\|\vec{a}_{3}\right\|^{2}+d_{1}^{2}-d_{3}^{2} \\
\left\|\vec{a}_{4}\right\|^{2}+d_{1}^{2}-d_{4}^{2}
\end{array} \\
& \text { (2) }
\end{aligned}
$$

〔A is Lin. Dependent! \because what does it mean for $\left(A^{\top} A\right)^{-1}$?

$$
A^{\top} A=\left[\begin{array}{lll}
4 & 8 & 12 \\
2 & 4 & 6
\end{array}\right]\left[\begin{array}{ll}
4 & 2 \\
8 & 4 \\
12 & 6
\end{array}\right]=\left[\begin{array}{cc}
224 & 112 \\
112 & 56
\end{array}\right] \rightarrow \frac{1}{56}\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]
$$

coll $=2 \mathrm{col} 2$
Lin. Dependent!
No inverse exists

4	2		
8	4		
12	6	$=$	x_{1}
---	---	---	---
x_{2}	$=$	$\left\\|\overrightarrow{a_{2}}\right\\|^{2}+d_{1}^{2}-d_{2}^{2}$	
:---			
$\left\\|\vec{a}_{3}\right\\|^{2}+d_{1}^{2}-d_{3}^{2}$			
$\left\\|\overrightarrow{a_{4}}\right\\|^{2}+d_{1}^{2}-d_{4}^{2}$			

$$
\operatorname{det}\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]=4-4=0
$$

थA is Lin. Dependent! © what does it mean for $\left(A^{\top} A\right)^{-1}$?

Invertibility of $A^{T} A$
Recall: matrix is invertible if \rightarrow Nullspace is 'trivial' \rightarrow Lin ind cols/rows
The matrix $A^{T} A$ is invertible eff $\operatorname{Null}\left(A^{T} A\right)=\overrightarrow{0}$
Theorem: $\operatorname{Null}\left(A^{T} A\right)=\operatorname{Null}(A)$
Proof: Need to show two things:
(1) some vector $\vec{w} \in \operatorname{Null}(A)$ is also in $\operatorname{Null}\left(A^{\top} A\right)$
(2) Some vector $\vec{V} \in N u l l\left(A^{\top} A\right)$
 is also in $\operatorname{Null}(A)$
known: $\vec{w} \in \operatorname{Null}(A)$
known: $A^{\top} A \vec{V}=\overrightarrow{0}$

$$
\begin{aligned}
A \vec{w} & =\overrightarrow{0} \\
A^{\top} A \vec{w} & =A^{\top} \overrightarrow{0} \\
\left(A^{\top} A\right) \vec{w} & =\overrightarrow{0}
\end{aligned}
$$

Trick! Consider:

$$
\begin{aligned}
& \uparrow \text { is also in } A^{\top} A \\
& \text { wullspace of } \\
& \text { Nu }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { cider: } \begin{array}{ll}
\|A \vec{v}\|^{2}=\langle A \vec{v}, A \vec{v}\rangle & =(A \vec{v})^{\top} A \vec{v} \\
\uparrow & =\vec{v}^{\top} A^{\top}(A \vec{v} \\
\text { if mag. is zero }
\end{array} & =\vec{v}^{\top}(\underbrace{A^{\top} A \vec{v}}) \\
\begin{array}{ll}
\text { can only be vector }
\end{array} & =\vec{v}^{\top}(\overrightarrow{0}) \\
\|A \vec{v}\|=\overrightarrow{0} \rightarrow A \vec{v}=0 \quad & =\overrightarrow{0}
\end{array}
$$

Invertibility of $A^{T} A$

- What if $A^{T} A$ is not invertible

$$
A^{T} A \hat{x}=A^{T} \vec{b}
$$

A: \hat{x} will have infinite solutions with the same $\vec{e}=A \hat{x}-\vec{b}$

EECS16A: we're do course evaluations now

If over 80% of the class fill outs the official course evaluation for this class (deadline of May 7), we will award 2 bonus points to everyone in the course (2 bonus points out of a total of 300 course points).
course-evaluations.berkeley.edu

