THIS 1S YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSIJERS ARE LJRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

EECS 16A

fun stuff!




Overdetermined system: use least squares

.=b

* the least-squares solution “minimally perturbs” b

£ = (ATA)"1ATh




Underdetermined system; P27 IFTVSCIENCE WAS MORE LIKE REAL SCIENCE

SPECIAL AGENTS WOULD NEVER
FIGURE oUT WHOo THE VILLAIN 1S,

WE RECONSTRUCTED

THIS IMAGE FEOM A

~ A
\\\~~
. . (] (] . \ —
* Can be infinite valid solutions! (A \\i‘laf =
. ~
* Ideas: pick the ‘smallest’ one? The ‘sparsest’? ol R NY
min norm ~
* e.g. min horm: \\»
A T TN\-17. 0 e
X = AT(AAT) b

min norm



‘Sparsity’ tells us how ‘dense’ the solution is

Dense Matrix Sparse Matrix

not sparse

T LT T 1 ; }I | Sparse Edges
11 |92 |4 |3 2.2'3.3.2. _11_ _"- . '/_1 . i
3 |9 |13|8 .51'”' .z. .a K 11 1 |- |4 1_. .
B |32 2 |34|18|7 |78|10|7 _'d_- - | _3_1 o B B
223 |9 |8 .?1.12.22.1?.3 . g - 1-_ .
1321|219 |2 |47(1 |81|21]|9 13021 ]. @ |2 |47 |1 |81|21|9
21 |12 |53 |12 511.'):' .5 .La .7 S SN S O KO O K -]
1|8 |33|82|19 |87 |16 (3 s [ J-J- |- 19_8_53_ | "I
.4.4.?3.2.15.11' .2.59. 5 "
13 | 22 | 32 | 42 |-15. -2- -2 2 22 21

The fraction of non-zero elements Sometimes things are
In a matrix is called the sparsity sparse in a different way



Example: image compression

Reduce memory by smartly choosing which information to throw away

No compression

bus.rar




Sparse x means only a few columns of A ‘matter’




If we knew which elements were non-zero, we could
solve a small least squares problem:




Can we compress data at the capture stage?

(.
(7

compress i




Yes! With compressed sensing!
Example: single-pixel camera

Projected
patterns

OBJECT BEING IMAGED

PROJECTOR

Reconstructed
(2% of data)

Original image

If you design the patterns on your imaging
lab well, and images are compressible,
you could solve with very little data!

Barniauk et al., Rice University.



We usually take direct measurements

N

J

N

r i ‘i
o
3




Multiplexed measurements

What makes a good A matrix?

A is “orthogonal”




Compressed sensing solves underdetermined problems

What makes a good A matrix?

A is (almost) orthogonal
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Computational Imaging @ Berkeley

7

Compressed Sensing MRI

Michael Lustig




Compressed sensing is all about using prior knowledge

» Redundancy reduces sampling requirements
(The more you know, the less you need)

measurements

nothing prior knowledge everything

Prior knowledge saves scan time

M. Lustig, UC Berkeley



Compressed Sensing MRI

Medical images are compressible
Standard approach: First collect, then compress

(5 )
1001101001101
0001001110101
0100110100010
0010101101010
1010101100101
1101110111010
1010110110110

10100111111
. v

[:fé?g?imm]H Compression ]

Michael Lustig’s Lab Rl




Compressed Sensing MRI

Medical images are compressible
New approach: Acquire “compressed” data directly!

Senlsing ]

fE . ' ;
5 101000110100 |
y 1101011

*Courtesy, M. Uecker, J. Frahm, Max Planck

Michael Lustig’s Lab



Computational Imaging @ Berkeley

r

Comp. lllumination Microscopy n
Laura Waller §




Computational imaging pipeline

Hardware design Take picture

| > .

Crunch Data

NN

N

Final result




Lenses map points to points

System response to point source

lens

sensor




DiffuserCam: stick a scatterer on a sensor

System response to point source

Double Sided 1. g,

oSN, 12N x 450N
N 25YD)

https://laurawaller.com/opensource



https:///

DiffuserCam: stick a scatterer on a sensor

diffuser

sensor




Traditional cameras take direct measurements

K
|
-
1 ___

ll N
e “ X

| »
measurement

object



Computational cameras can multiplex

7!

measurement

Need to know the
system model!

- measure it?
- model it?
- machine learn it?

||

-
] = B



System response shifts with position




DiffuserCam system model is a ‘shift-invariant’

System response is same but shifted
for different image pixels



We could find location of a point by correlating image
captured with shifts in system response!

=
)
. p—
S
o]
—
P]
—
=
S

shift (pixels)




Reconstruction finds strength of each ‘point source’:

Looks a lot like our GPS problem! (especially if image is sparse)

post Hon
won o(— a

0
cof el [ r point soul@

2 ?o\rﬁ souf@b
ﬂm
et







raw sensor data recovered scene

Grace Kuo [
Nick Antipa [#

*solver is ADMM with TV reg in Halide



Image reconstruction is nonlinear optimization

= A 2
argmin| p - f’jﬁ* * x | +A|OD
>0 ; A

Sparsity
basis

*solved with ADMM in Halide

S. Boyd, et al. Foundations and Trends in Machine Learning (2011)
J. Ragan-Kelley, et al. AMC SIGPLAN (2013)




Cute! But what’s it good for?







1 Million

Single-shot 3D is underdetermined

100 Million

Problems:

- Haration (100umres?1?) i
- uta

- Underdetermined = v

A

UOH|IN T X 00T



128X more voxels for FREEI

N. Antipa, G. Kuo, R. Heckel, E. Bostan, B. Mildenhall, R. Ng, L. Waller, Optica 5(1) (2017).



Raw fluorescence data at 30 fps 3D video reconstruction

i
;J’&l L _E
R b 1 i
Yilse
aNCL
z X O x 7
v 50 yum 4

[4 P 3
Kyrollos Yanny rm
Nick Antipa g m




Neural activity tracking with flat DiffuserScope

=) sample

diffuser '} color filters

Sensor

G. Kuo, F. Liu, I. Grossrubatscher, R. Ng, L. Waller, Optics Express (2020).






EECS 16A
Neurons are Circuits!




The Body Eleciric - Nervous System

* There are two distinct parts of the nervous system
— Central Nervous system: Brain, Spinal Cord
— Peripheral Nervous system: All other neural elements,
including the peripheral nerves (motor and sensory) and
the autonomic nerves (regulate internal organs)

o\
[, V) Brain
ey o Central
Nervous
) | / System
.-/7 |

Spinal Cord
' . \1> Nerves Peripheral
| | | Nervous
| If System
Al /f \
| “.") |

ELECTRICAL ENGINEERING & COMPUTER SCIENCES



Basic Element: The Neuron

o /
DENDRITES >, AXON
(" TERMINAL
J —
NODE OF
~ I CELL BODY RANVIER ‘
/A s

/\

NUCLEUS

MYELIN

You have 100 billion of these
3

ELECTRICAL ENGINEERING & COMPUTER SCIENCES




Resting Membrane Potential

Berkeley

ELECTRICAL ENGINEERING & COMPUTER SCIENCES

Mostly Cl-, Na+

©
®G © o079 ©
Extracellular G @ @ @ G)@
side Ga G) Q G;
09 o ©® 00

cl@/clexexexexexe)

CEECEEEEL

@ ®
Cytoplasmic @ 9 9 Q ®® e g

side

r Equal +,—

r Equal +,—

r Equal +,

 Nernst Equation (E > potential)
=rNst EQUATl
= COV\CLW}‘“F"'J
E, - RT ln[X]o

ZF|X]

* R — gas constant

e T—Temperature (K)

e F — Faraday constant
e 7— Valence of ion

e RT/zF ~ 25mV at 25C, K+
— Equivalent to kT/g!

e £ is typically ~ -70 to -80mV

=

e Resting channels are permeable to K+ diffusing out of the cell causing
(+) charges to accumulate at the cell surface and (—) charges inside
e This self limits when the electrical force negates the chemical force

EE




lon Channels (switches ™\

Change in @

Fes
membrane

potential

C Voltage gating
A~ N\

e There are several types of stimuli controlling ion

channels opening and closing
— These can be chemical, electrical or mechanical

Berkeley EECS

Kandel, PONS 5

ELECTRICAL ENGINEERING & COMPUTER SCIENCES



] The Signal CURRENT PULSE

EXCITATORY Maﬂ,/\?b\ﬁﬂi(

INPUT v g *30)
X/ INHIBITORY E
,_ INPUT 5 Temporal
%“ : B _ E summation
) EPSP@_C 2 -5 Y W— Aresheld.

“Epsp RSP 0 \/

1 ¢ 4+

\ A A AA
R —4 Time (msec)

g ACTION POTENTIAL (AP)
hillock | |
Axon

© 2011 Pearson Education, Inc.

* lon channels open in response to stimuli causing the cell to depolarize
e There is temporal and spatial summation

 Once the membrane potential goes above threshold, it starts an AP

Berkeley EE

ELECTRICAL ENGINEERING & COMPUTER SCIENCES 6




Action Potential Propagation

+30 n \//

= HOW FAR CAN THE SIGN
: | el PROPAGATE WITHQUt'
i el R DYING Q{W'

MICRONS TO METERS

ELECTRICAL ENGINEERING & COMPUTER SCIENCES
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The Axon

>y

V),
(&
e

AN ‘l

— o -

AN AXON IS LIKE A CABLE

MEMBRANE
(LOSSY)

CYTOPLASM
(CONDUCTIVE)

EXTRACELLULAR FLUID

ELECTRICAL ENGINEERING & COMPUTER SCIENCES




Modeling the Axon

MEMBRANE

A (LOSSY)

CYTOPLASM
(CONDUCTIVE)
\ ' )\ y \ V J EXTRACELLULAR FLUID
SEGMENT DX
myy - W W
I 1 S
| © = 0 -
AY ‘ Y A , ! EXTRACELLULAR FLUID

AX AKX
r., = membrane resistance [Q*m];

r, = axon resistance [Q/m]
Berkeley 1512 c,, = membrane capacitance [F/m]

ELECTRICAL ENGINEERING & COMPUTER SCIENCES




A Single Axon Segment

Avai Aia+

AX

KIRCHOFF’S VOLTAGE LAW KIRCHOFF’S CURRENT LAW
Av, =1, AX Al = (S~ 1 )AX
- \N T=C
[ Av, _ . Ai, v Yov
T lara = Cm
A Ax Ax r "ot
Berkeley EE+

11




> eelS /63

The Rest is Math 2.0
Av, Ai, v, ov,
:_lara :___cm
Ax Ax r, Ot
Ax — 0
1oy, _ oi, v ov,
=1, 42 _
v, OX ox r, Ot
1 v, Oi l
r, Ox’  ox Sk
\ 1 azva__ﬁ_c ov,
r, Ox” r. Ot

ELECTRICAL ENGINEERING & COMPUTER SCIENCES



The Equation

REARRANGE
TERMS

ELECTRICAL ENGINEERING & COMPUTER SCIENCES

1 ov, v ov

-4 _ C a
2 m
v, Ox v, Ot
v O’ v, ov,
— *+c, b, —+v,=0
ra a- at
\ ] | )
y i
SPACE TIME

DEPENDENT DEPENDENT

LET’S ANALYZE ONE AT A TIME
N

13



Time Dependence

0
r@}v/ ov
—_m t+cr —2+v =0
axz m'm a

. ot
| J
I
HOLD SPACE
CONSTANT
oV
cr,—2+v =0
Ot

ODE WITH STANDARD SOLUTION

]

. —t/T _
— va(t) =ve \ T=rc TIME CONSTANT

ELECTRICAL ENGINEERING & COMPUTER SCIENCES

m

NNA—
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Space Dependence

=()

HOLD TIME
CONSTANT
2

r ov

-2 —2+y =0

Ox?

ra

ODE WITH STANDARD SOLUTION
_y o YA _ |"m | SPACE CONSTANT
v.(x)=ve A= |2

. r W\/__

ELECTRICAL ENGINEERING & COMPUTER SCIENCES
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What does it mean?

J /oﬁj
A= |In r=rc,
I"a - =
*KSPACE CONSTANT Y<TIME CONSTANT
The distance it takes for a The amount of time it takes
signal to decay away for a signal to decay away

MEMBRANE (LOSSY)

CYTOPLASM
(CONDUCTIVE)

EXTRACELLULAR FLUID

L

HOW CAN IT BE IMPROVED?

16

ELECTRICAL ENGINEERING & COMPUTER SCIENCES
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Evolution

)

Taz |5 Tr=rc
ra‘l/ _ m m

SPACE CONSTANT TIME CONSTANT

MYELINATION

Brain

Giant
axon

~~—~—

Berkeley EE

COMPUTER SCIENCES
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Nodes of Ranvier

What do you think Nodes of Ranvier are for?
Hint: think about a digital signal propagating across a

very long wire.. A %\SVJL ﬂff@lqp

Berkeley EEC © . ZECS IS




Neural Networks CURRENT PULSE

;+30 =
I/ &\)\\ @%VD‘\\ E )
dendrltes ® ’(VC{—WQ
__-,.. nucleus = Temporal
\ § //bf?:_:r "qg,_ summation J
s o S A e
‘%/v/ &\\ body | 2-70 \/
axon =
in ,l terminals =
@ 0 S
‘ A A AA
_ Time (msec)
n
_2 % z I ACTION POTENTIAL (AP)
in

n

— bias (0 Scf(v‘(f,“

/\ C\(c;)\)(31
Berkeley EE
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Artificial Neuron

WY X M\;efxr"’”?S

dendritgs

N g
| £~ nucleus <

AL, J— B
AN oy aon AR _
h axgn_ NN\ \\}%
/V\ in, @ terminals varﬁ\/) /D\ LA | c\(\Q—\D\)
/ Y/

N\’Z% s|p o

ELECTRICAL ENGINEERING & COMPUTER SCIENCES
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How to get involved In research

IF 1 KNEW
* If you're interested in research: m
- Talk to your TAs

- Talk to professors I “AS :)OI&JG
- Look for openings on
RESEARCH

Beehive/Dare/URAP
websites




Enough about me...



« Congrats!

* What you have accomplished
this semester:

- Built a camera

- Built two types of
touchscreens

- Built your own GPS system

* If you liked the class, please:
- Thank your TAs!
- apply to become one!

YOU DID T




Learning Goals <
Stuff We did: BA

EECS 16A
* Module 1: Introduction to systems
- How do we collect data? build a model?
* Module 2: Introduction to circuits and design
- How do we use a model to solve a problem
* Module 3: Introduction Signal Processing and Machine Learning
- How do we “learn” models from data, and make predictions?

|

Stuff you will do next

EECS 16B

* Module 4: Advanced circuit design / analysis

* Module 5: Introduction to control and robotics

* Module 6: Introduction to data analysis and signal processing

HIGENVALUES ‘}

l

4

W
| ISFUTILE

WHAT PART

W
DON'T YOU
UNDERSTAND?



What you built:

Real World

J6r

Tonchsereens @

Pasithoning:

Imaging:

Measuremeni

4/
>

Measurement
circuits

MA— WA

1
T T

(@

-‘1\"

%) ®

\

[
=

Procescing

Systems of
linear equations

Matrix analysis

Processing
circuits

Cross-correlation

Optimization



EECS16B: Designing Information Devices and Systems 11

Big goal: Get signals from brain and interpret them Module 1 - Circuits: Interfaces (brain, voice)
Module 2 - Control: Controls (feedback, stability)

/Y Maybe get rid Module 3 - Classification: Figuring out the intention
of wires too

Eighab fro Control Voice controlled robo car lab project — from scratch!
rain .

OpAmp Filters,
ADCs/DACs,
uController,
SysID,
Feedback,
SVD, PCA

/ Demo video

Robot Arm

Design Contest
(make our SIXT33N better!)


https://drive.google.com/file/d/17Q-PMfKKrgS84Jt_2QGeFANwwC7g1qjX/view

Modeling
& Problem
Formulation

Design
Thinking

& )
Algebra ,
Probability 2 Learning, Machine Structures
_ /\* Control, Systems, 4-/\ < Circuits &
. Signal Processing . 61C Devices

How to approach something unfamiliar
and systematically build understanding

Linear Algebra: conceptual tools to model
Circuits: How to go from model to design, grounded in physical world

Intro to foundational concepts in Machine Learning



EECS course map

144
145L
A 149
Cio6A
A
C106B
128 »

162

16A

120

126

123

127 ik

122

> 16B

117

137A

137B

113

i 143
105
F Y
134
A
130
A
v
147
140
oV
118 142

Required =—p

Recommended ===-p»



(S COURSE MAP

applications

Required =———p

Recommended ====»




FINALLY!

The End

THE END!



IN FINAL EXAM..
WHEN YOU DON'T KNOW THE

Oh, exce pt for ANSEROFQUESTIO... BU
the final exam... T

STUDENTS/BELIKE THE LAST 5 MINUTES OF EXAM

BE SURE
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