
EECS 16A
fun stuff!



Overdetermined system: use least squares

• the least-squares solution “minimally perturbs” b 

=



Underdetermined system: ????

• Can be infinite valid solutions!
• Ideas: pick the ‘smallest’ one? The ‘sparsest’?

• e.g. min norm:  
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‘Sparsity’ tells us how ‘dense’ the solution is

The fraction of non-zero elements 
in a matrix is called the sparsity

Take|derivative|

Sometimes things are 
sparse in a different way



Example: image compression

No compression 23:1 compression 144:1 compression

Reduce memory by smartly choosing which information to throw away



=

Sparse x means only a few columns of A ‘matter’



If we knew which elements were non-zero, we could 
solve a small least squares problem:

=



Can we compress data at the capture stage?

compress



Yes! With compressed sensing! 
Example: single-pixel camera

If you design the patterns on your imaging 
lab well, and images are compressible, 

you could solve with very little data!

Original image Reconstructed 
(2% of data)

Barniauk et al., Rice University.

Projected 
patterns



b xA

We usually take direct measurements

=



b A x

Multiplexed measurements

=

What makes a good A matrix?

A is “orthogonal”

AT                      A         =         I



b A x

Compressed sensing solves underdetermined problems

=

AT                      A         ≈         I
What makes a good A matrix?

A is (almost) orthogonal



Computational Imaging



Light Field Cameras

Ren Ng

Full-stack Optimization

Ben Recht
Comp. Illumination Microscopy

Laura Waller

Computational Imaging @ Berkeley

Compressed Sensing MRI

Michael Lustig



Compressed sensing is all about using prior knowledge

M. Lustig, UC Berkeley



Compressed Sensing MRI

Medical images are compressible
Standard approach: First collect, then compress

Michael Lustig’s Lab



Compressed Sensing MRI

Medical images are compressible
New approach: Acquire “compressed” data directly!

*Courtesy, M. Uecker, J. Frahm, Max Planck

*

Michael Lustig’s Lab



Light Field Cameras

Ren Ng

Full-stack Optimization

Ben Recht

Compressed Sensing MRI

Michael Lustig

Computational Imaging @ Berkeley

Comp. Illumination Microscopy

Laura Waller



Computational imaging pipeline

Hardware design Take picture Crunch Data Final result



Lenses map points to points

lens

sensor

System response to point source



Grace Kuo
Nick Antipa

DiffuserCam: stick a scatterer on a sensor

diffuser

sensor

https://laurawaller.com/opensource
Camille Biscarrat

Shreyas Parthasarathy

System response to point source

https:///


diffuser

sensor

DiffuserCam: stick a scatterer on a sensor

Grace Kuo
Nick Antipa



b xA

Traditional cameras take direct measurements

=

measurement
object



b A x

Computational cameras can multiplex

=

measurement
object

Need to know the 
system model!

- measure it?
- model it?
- machine learn it?



System response shifts with position



b A

DiffuserCam system model is a ‘shift-invariant’

x=

System response is same but shifted
for different image pixels



We could find location of a point by correlating image 
captured with shifts in system response!



Reconstruction finds strength of each ‘point source’:

Looks a lot like our GPS problem! (especially if image is sparse)



raw sensor data recovered scene

*solver is ADMM with TV reg in Halide 

Grace Kuo
Nick Antipa



raw sensor data recovered scene

*solver is ADMM with TV reg in Halide 

Grace Kuo
Nick Antipa



Image reconstruction is nonlinear optimization

*solved with ADMM in Halide
S. Boyd, et al. Foundations and Trends in Machine Learning (2011)
J. Ragan-Kelley, et al. AMC SIGPLAN (2013)

b



Cute! But what’s it good for?



2D



=

x

1 
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b

Single-shot 3D is underdetermined

100 x 1 M
illion

100 Million

A

Problems:
- Calibration (100M images?!?)

- Computation
- Underdetermined



more voxels for 

N. Antipa, G. Kuo, R. Heckel, E. Bostan, B. Mildenhall, R. Ng, L. Waller, Optica 5(1) (2017). 



Kyrollos Yanny
Nick Antipa

3D video reconstruction

50 𝜇𝜇𝜇𝜇

1

0

Raw fluorescence data at 30 fps



Neural activity tracking with flat DiffuserScope

diffuser color filters

sensor

sample

Grace Kuo

G. Kuo, F. Liu, I. Grossrubatscher, R. Ng, L. Waller, Optics Express (2020).
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EECS 16A
Neurons are Circuits!



2

The Body Electric - Nervous System

• There are two distinct parts of the nervous system
– Central Nervous system: Brain, Spinal Cord
– Peripheral Nervous system: All other neural elements, 

including the peripheral nerves (motor and sensory) and 
the autonomic nerves (regulate internal organs)
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Basic Element: The Neuron

DENDRITES

NUCLEUS

CELL BODY

AXON

NODE OF
RANVIER

AXON
TERMINAL

MYELIN

You have 100 billion of these
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Resting Membrane Potential

• Nernst Equation (E  potential)

• R – gas constant
• T – Temperature (K)
• F – Faraday constant
• z – Valence of ion
• RT/zF ~ 25mV at 25C, K+

– Equivalent to kT/q!
• Ek is typically ~ -70 to -80mV

Mostly Cl-, Na+ 

Mostly K+, A-

• Resting channels are permeable to K+ diffusing out of the cell causing 
(+) charges to accumulate at the cell surface and (–) charges inside

• This self limits when the electrical force negates the chemical force 
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Ion Channels

• There are several types of stimuli controlling ion 
channels opening and closing

– These can be chemical, electrical or mechanical

Kandel, PONS
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The Signal CURRENT PULSE

EXCITATORY
INPUT

INHIBITORY
INPUT

ACTION POTENTIAL (AP)

• Ion channels open in response to stimuli causing the cell to depolarize
• There is temporal and spatial summation
• Once the membrane potential goes above threshold, it starts an AP
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MICRONS TO METERS

Action Potential Propagation

HOW FAR CAN THE SIGNAL 
PROPAGATE WITHOUT 

DYING OUT?
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The Axon

AN AXON IS LIKE A CABLE

CYTOPLASM
(CONDUCTIVE)

MEMBRANE
(LOSSY)

EXTRACELLULAR FLUID
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Modeling the Axon
MEMBRANE

(LOSSY)

EXTRACELLULAR FLUID

SEGMENT DX

∆X

rm

ra
cm

EXTRACELLULAR FLUID

AXON

rm = membrane resistance [Ωm];
ra = axon resistance [Ω/m]
cm = membrane capacitance [F/m]

∆X

CYTOPLASM
(CONDUCTIVE)
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A Single Axon Segment

∆X

rm
racm

ia
irm icm

KIRCHOFF’S CURRENT LAWKIRCHOFF’S VOLTAGE LAW

∆va, ∆ia

va
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The Rest is Math
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The Equation

REARRANGE 
TERMS

SPACE
DEPENDENT

TIME
DEPENDENT

LET’S ANALYZE ONE AT A TIME



14

Time Dependence

HOLD SPACE 
CONSTANT

0

ODE WITH STANDARD SOLUTION

TIME CONSTANT
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Space Dependence

HOLD TIME 
CONSTANT

0

ODE WITH STANDARD SOLUTION

SPACE CONSTANT
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What does it mean?

SPACE CONSTANT TIME CONSTANT
The amount of time it takes 
for a signal to decay away

CYTOPLASM
(CONDUCTIVE)

MEMBRANE (LOSSY)

EXTRACELLULAR FLUID

HOW CAN IT BE IMPROVED?

The distance it takes for a 
signal to decay away



17

Evolution

SPACE CONSTANT TIME CONSTANT

MYELINATION
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Nodes of Ranvier

What do you think Nodes of Ranvier are for?
Hint: think about a digital signal propagating across a 

very long wire..
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Neural Networks CURRENT PULSE

ACTION POTENTIAL (AP)
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Artificial Neuron

Note 19



How to get involved in research

• If you’re interested in research:
- Talk to your TAs
- Talk to professors
- Look for openings on 

Beehive/Dare/URAP 
websites



Enough about me…



• Congrats! 

• What you have accomplished 
this semester:

- Built a camera
- Built two types of 

touchscreens
- Built your own GPS system

• If you liked the class, please:
- Thank your TAs!
- apply to become one! 



Learning Goals
Stuff We did:

EECS 16A
• Module 1: Introduction to systems

- How do we collect data? build a model?
• Module 2: Introduction to circuits and design

- How do we use a model to solve a problem
• Module 3: Introduction Signal Processing and Machine Learning

- How do we “learn” models from data, and make predictions?

Stuff you will do next
EECS 16B
• Module 4: Advanced circuit design / analysis
• Module 5: Introduction to control and robotics
• Module 6: Introduction to data analysis and signal processing



What you built:



EECS16B: Designing Information Devices and Systems II

Signals from 
brain

Control

Robot Arm

Maybe get rid 
of wires too

Big goal: Get signals from brain and interpret them

Design Contest
(make our SIXT33N better!)

Module 1 – Circuits: Interfaces (brain, voice)
Module 2 – Control: Controls (feedback, stability)
Module 3 - Classification: Figuring out the intention 

Voice controlled robo car lab project – from scratch!

OpAmp Filters, 
ADCs/DACs, 
uController,
SysID,
Feedback,
SVD, PCA

Demo video

https://drive.google.com/file/d/17Q-PMfKKrgS84Jt_2QGeFANwwC7g1qjX/view


How to approach something unfamiliar 
and systematically build understanding

Linear Algebra: conceptual tools to model
Circuits: How to go from model to design, grounded in physical world

Intro to foundational concepts in Machine Learning



EECS course map





The End



Oh, except for 
the final exam…
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