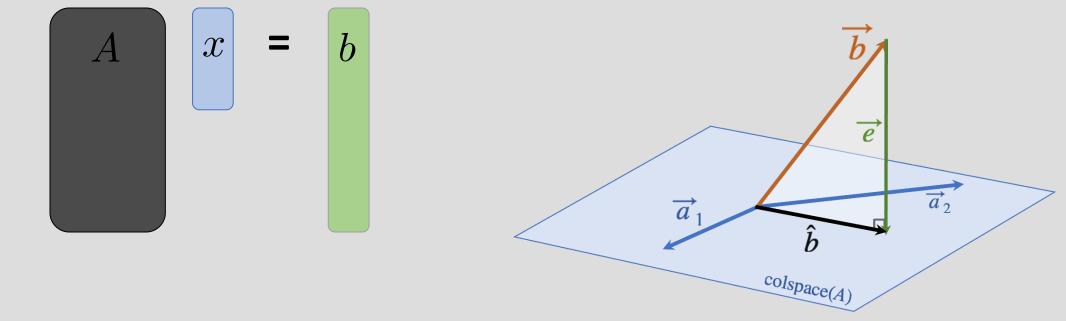


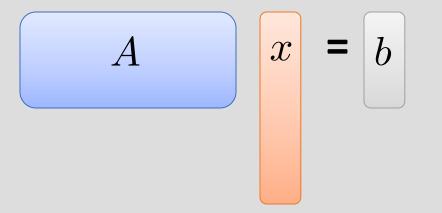
Overdetermined system: use least squares



• the least-squares solution "minimally perturbs" b

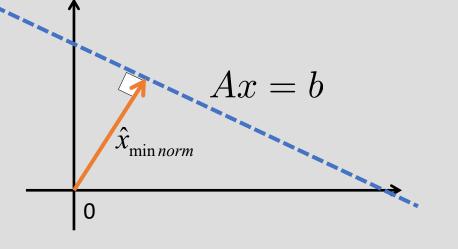
$$\hat{x} = (A^T A)^{-1} A^T \vec{b}$$

Underdetermined system: ???? IF TV SCIENCE WAS MORE LIKE REAL SCIENCE



- Can be infinite valid solutions!
- Ideas: pick the 'smallest' one? The 'sparsest'?
 - e.g. min norm:

$$\hat{x}_{\min norm} = \mathbf{A}^T (\mathbf{A}\mathbf{A}^T)^{-1} \vec{b}$$



'Sparsity' tells us how 'dense' the solution is

Dense Matrix											
1	2	31	2	9	7	34	22	11	5		
11	92	4	3	2	2	3	3	2	1		
3	9	13	8	21	17	4	2	1	4		
8	32	1	2	34	18	7	78	10	7		
9	22	3	9	8	71	12	22	17	3		
13	21	21	9	2	47	1	81	21	9		
21	12	53	12	91	24	81	8	91	2		
61	8	33	82	19	87	16	3	1	55		
54	4	78	24	18	11	4	2	99	5		
13	22	32	42	9	15	9	22	1	21		

Sparse Matrix											
1		3		9		3					
11		4						2	1		
		1				4		1			
8				3	1						
÷			9			1		17			
13	21		9	2	47	1	81	21	9		
				19	8	16			55		
54	4				11						
		2					22		21		

not sparse Take | derivative | Sparse Edges

The fraction of non-zero elements in a matrix is called the *sparsity* Sometimes things are sparse in a different way

Example: image compression

Reduce memory by smartly choosing which information to throw away

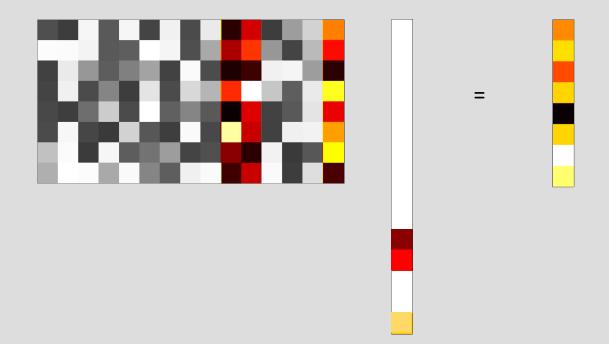
No compression

23:1 compression

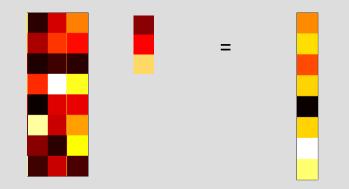
144:1 compression

bus.rar

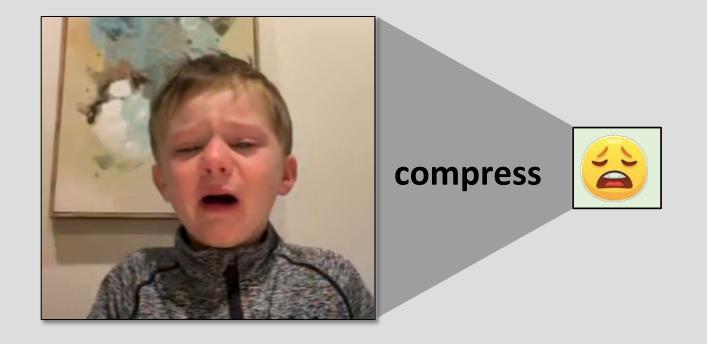
Sparse x means only a few columns of A 'matter'



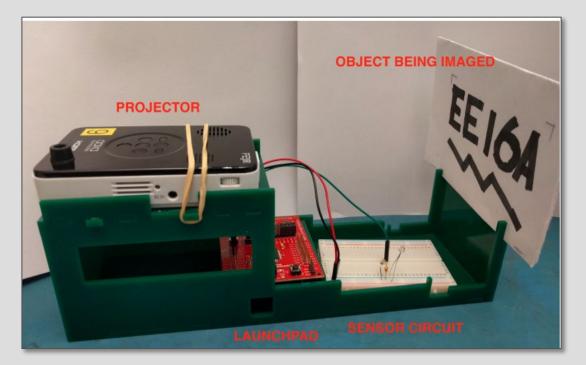
If we knew which elements were non-zero, we could solve a small least squares problem:



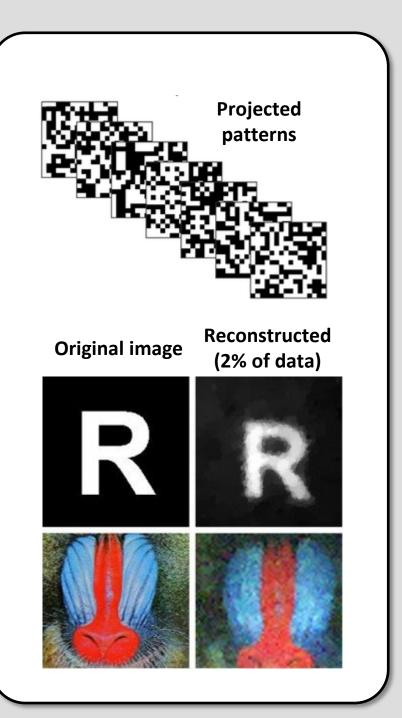
Can we compress data at the capture stage?



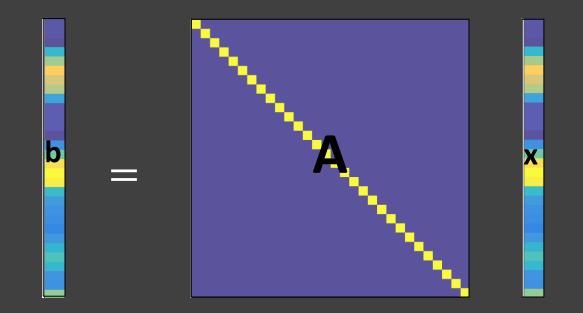
Yes! With compressed sensing! Example: single-pixel camera



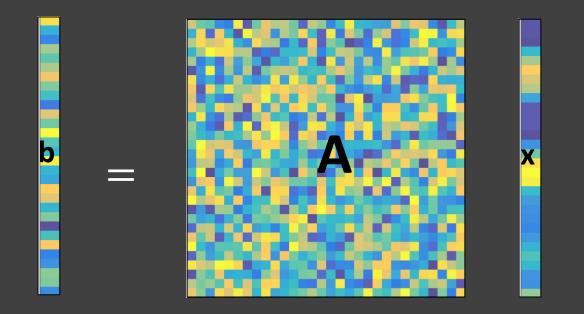
If you design the patterns on your imaging lab well, and images are compressible, you could solve with very little data!



We usually take direct measurements

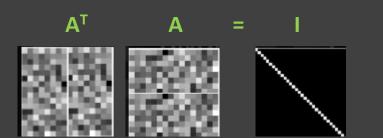


Multiplexed measurements

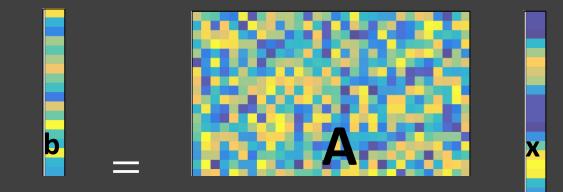


What makes a good A matrix?

A is "orthogonal"

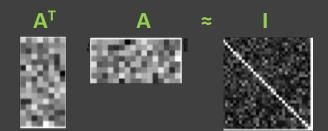


Compressed sensing solves underdetermined problems



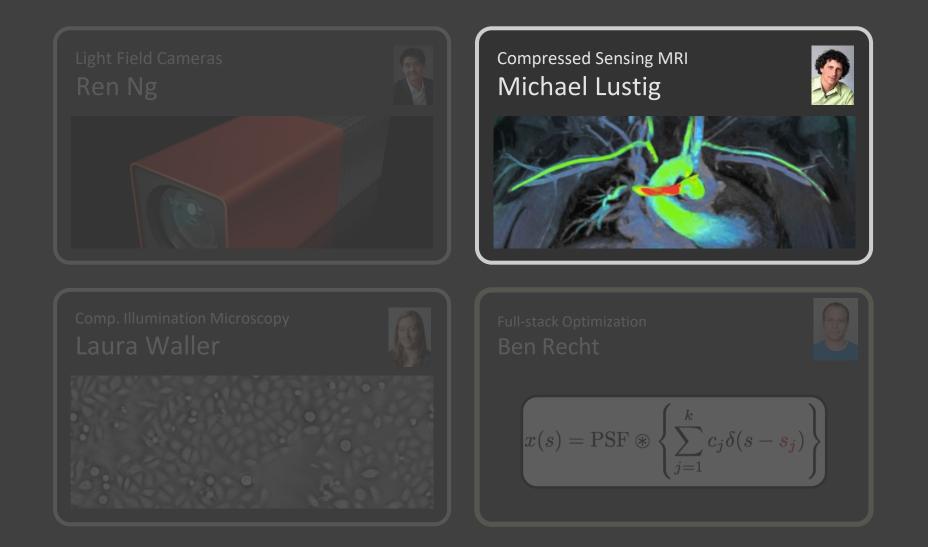
What makes a good A matrix?

A is (almost) orthogonal



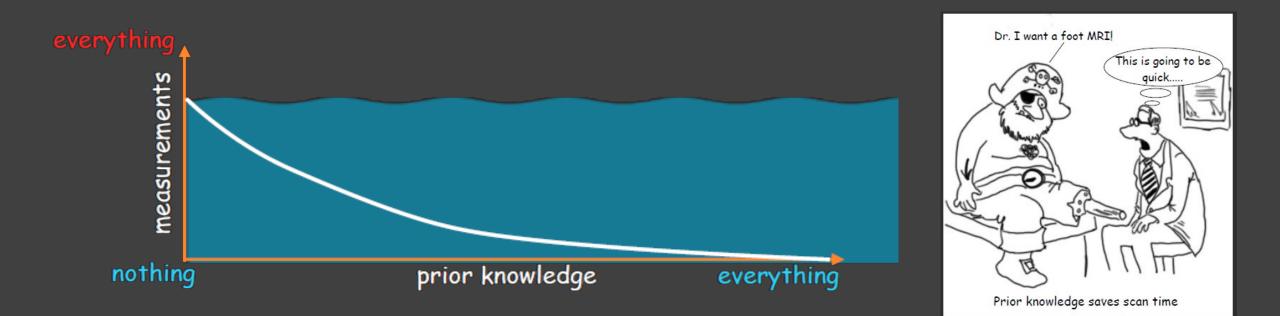
Computational Imaging

Computational Imaging @ Berkeley



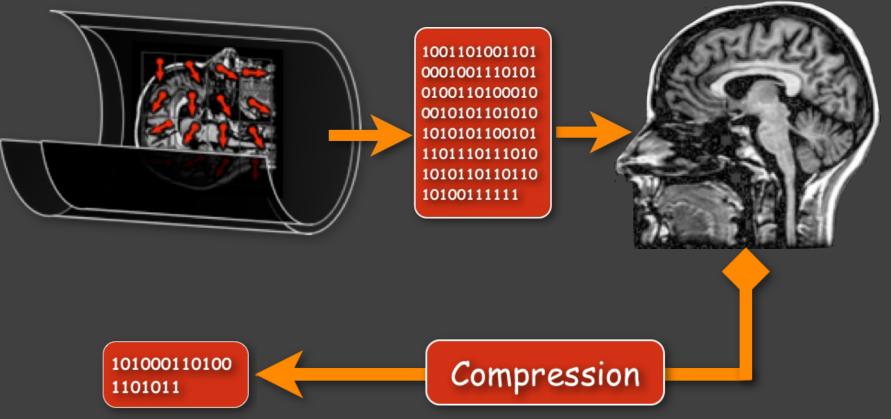
Compressed sensing is all about using prior knowledge

• Redundancy reduces sampling requirements (The more you know, the less you need)



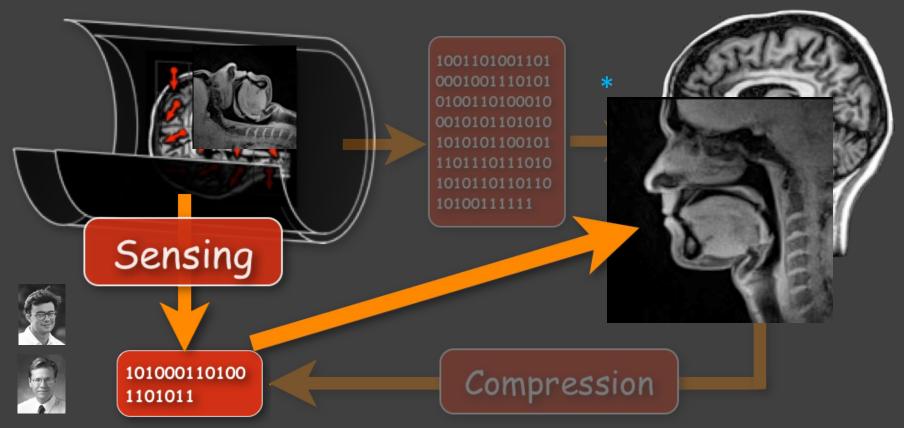
Compressed Sensing MRI

Medical images are compressible Standard approach: First collect, then compress



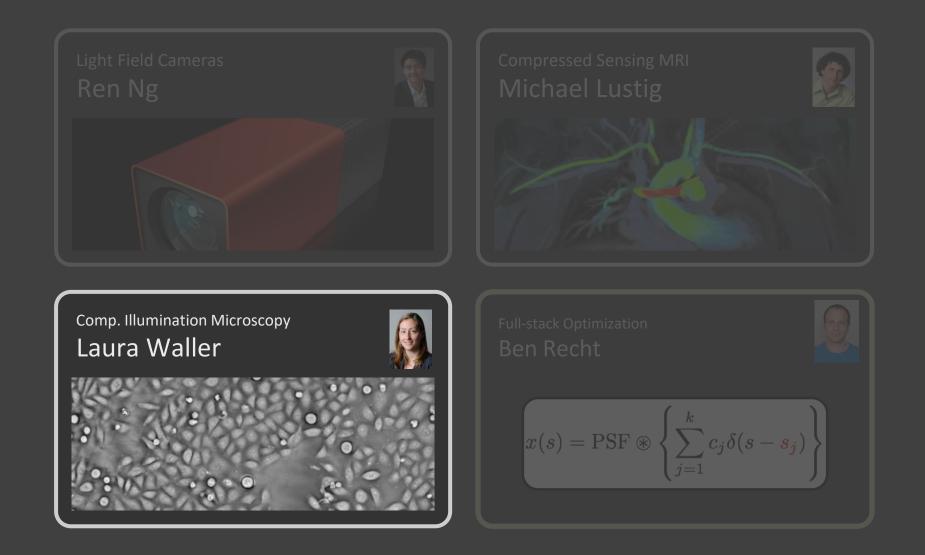
Compressed Sensing MRI

Medical images are compressible New approach: Acquire "compressed" data directly!

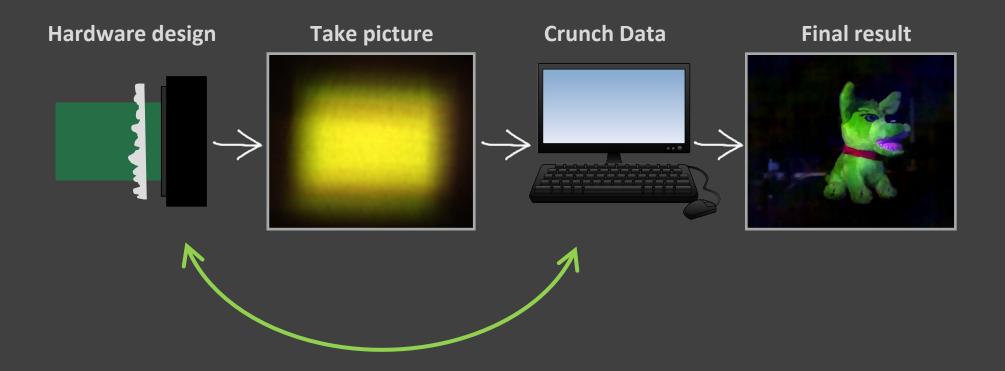


*Courtesy, M. Uecker, J. Frahm, Max Planck

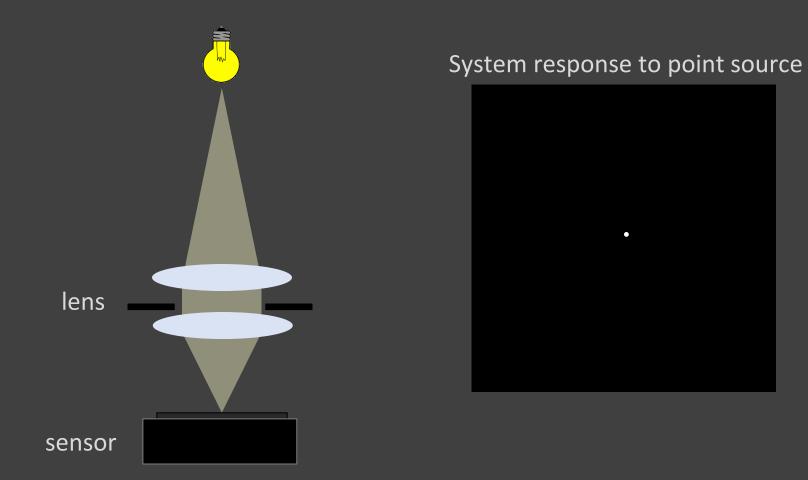
Computational Imaging @ Berkeley



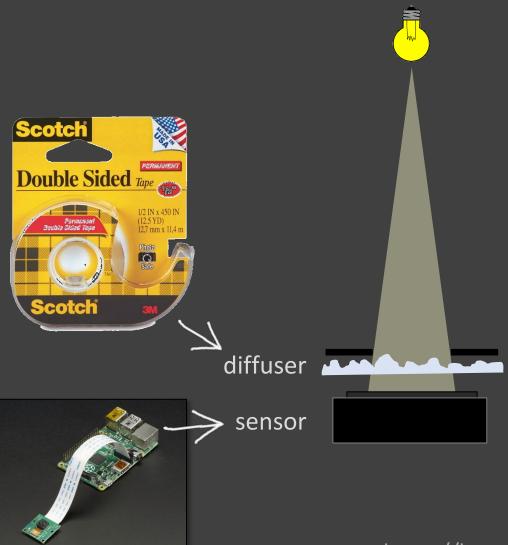
Computational imaging pipeline



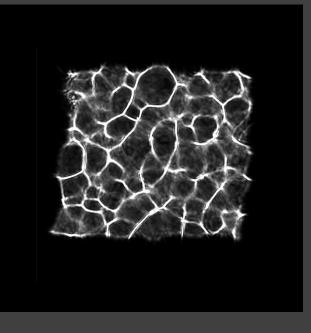
Lenses map points to points



DiffuserCam: stick a scatterer on a sensor



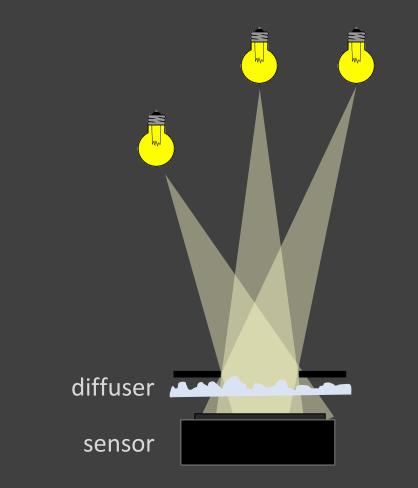
System response to point source

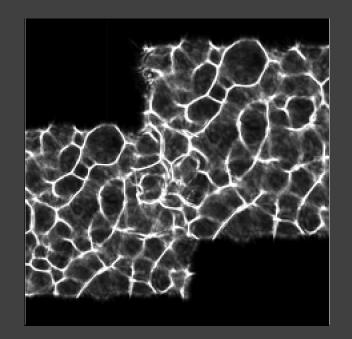


Camille Biscarrat hreyas Parthasarathy

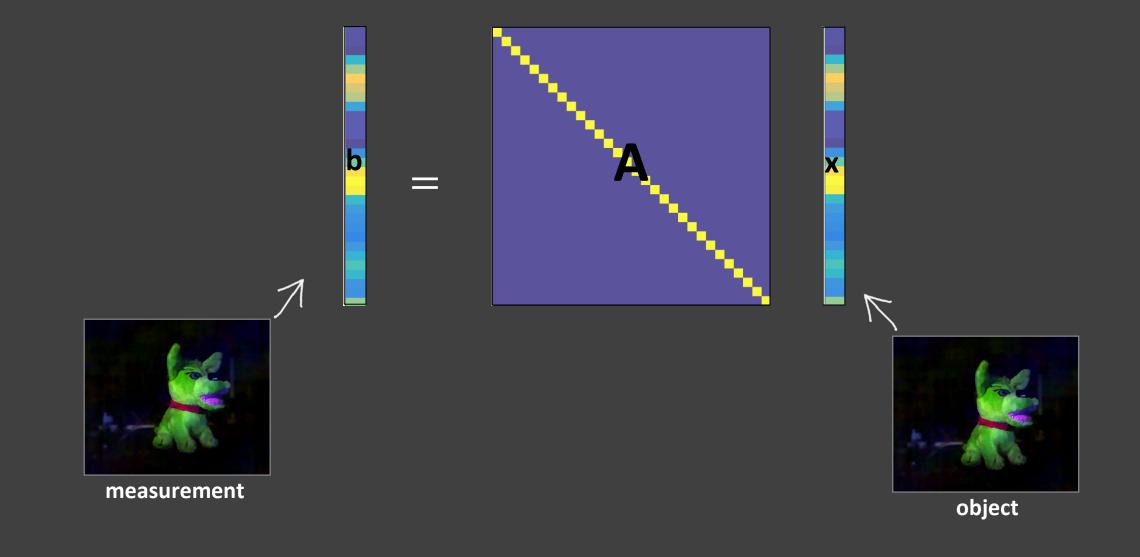
https://laurawaller.com/opensource

DiffuserCam: stick a scatterer on a sensor

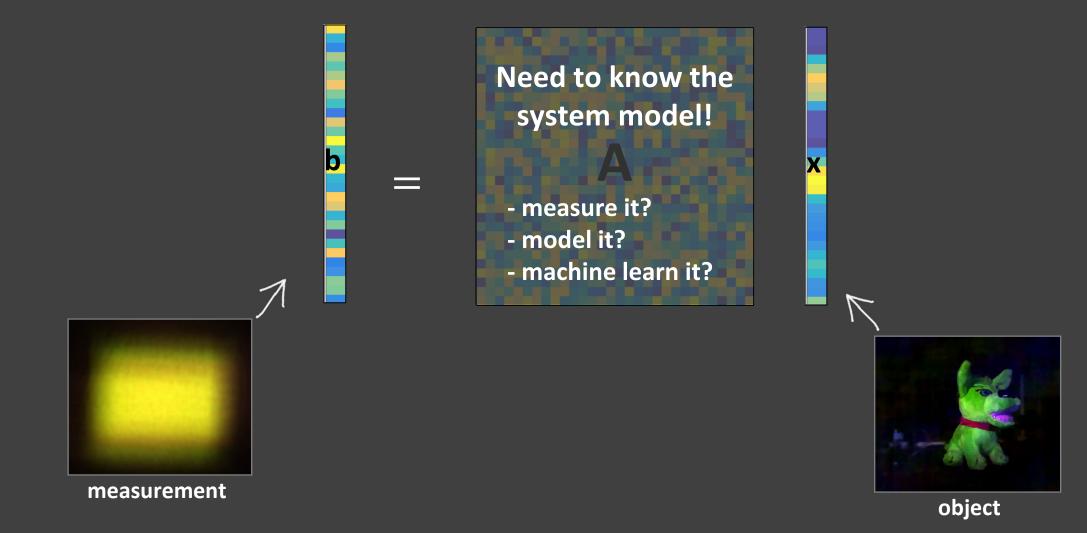




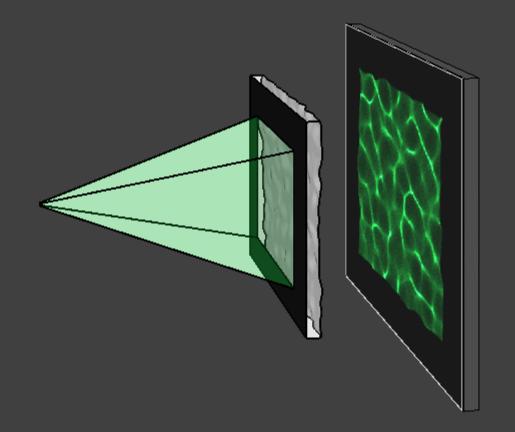
Traditional cameras take direct measurements



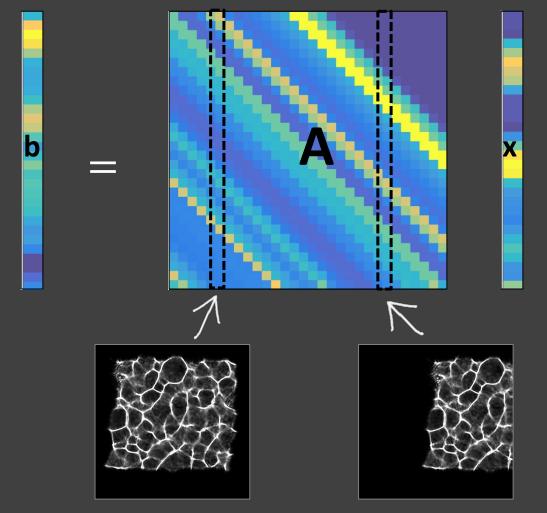
Computational cameras can multiplex



System response shifts with position

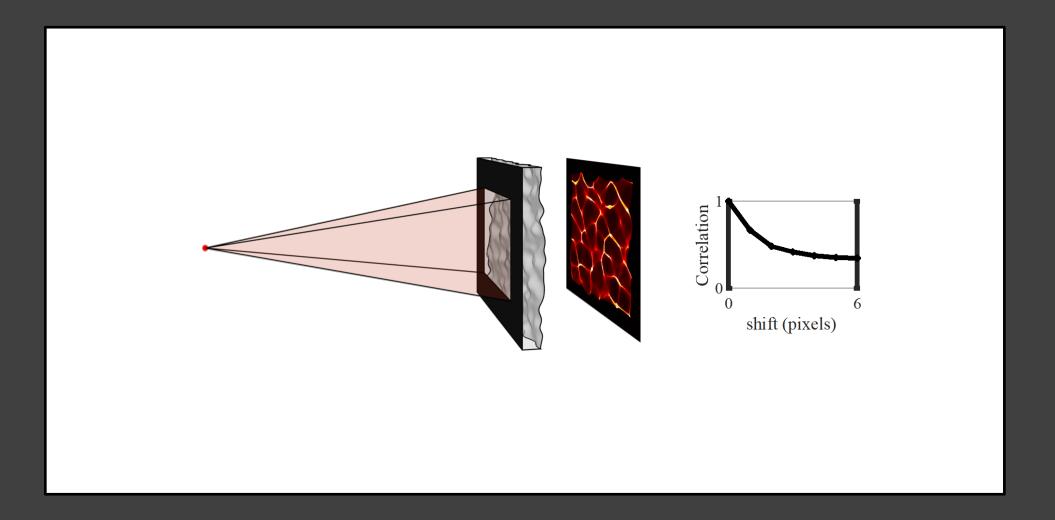


DiffuserCam system model is a 'shift-invariant'

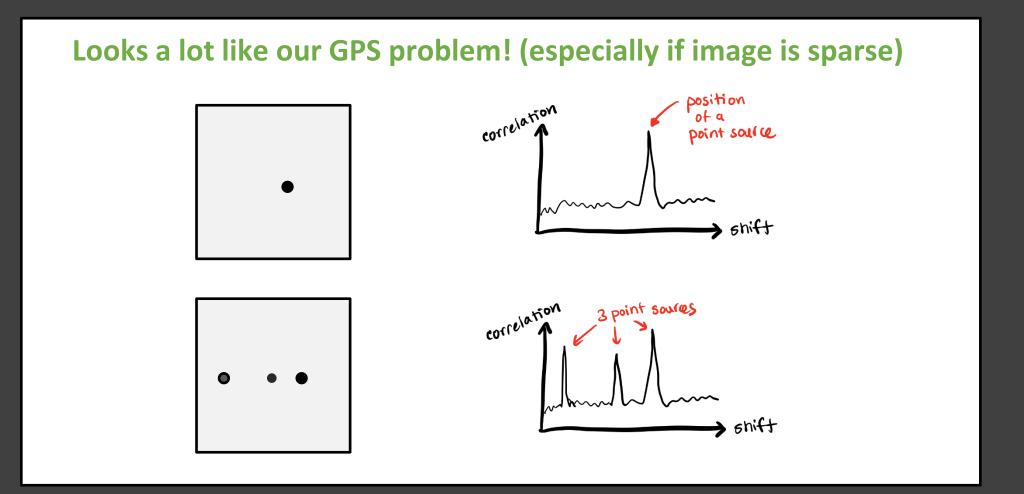


System response is same but shifted for different image pixels

We could find location of a point by correlating image captured with shifts in system response!



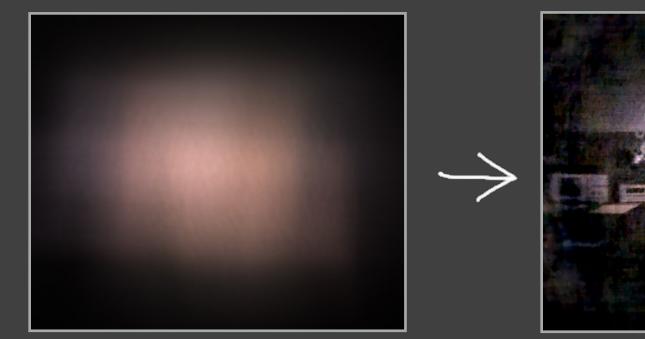
Reconstruction finds strength of each 'point source':



raw sensor data

recovered scene

*solver is ADMM with TV reg in Halide



raw sensor data

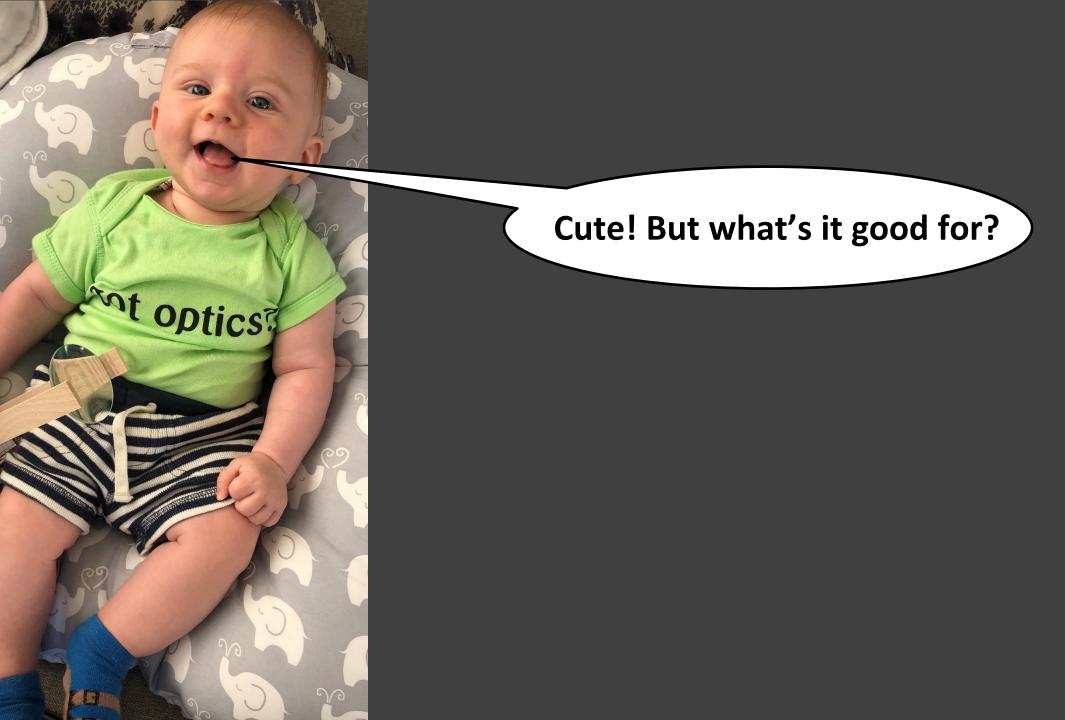
recovered scene

*solver is ADMM with TV reg in Halide

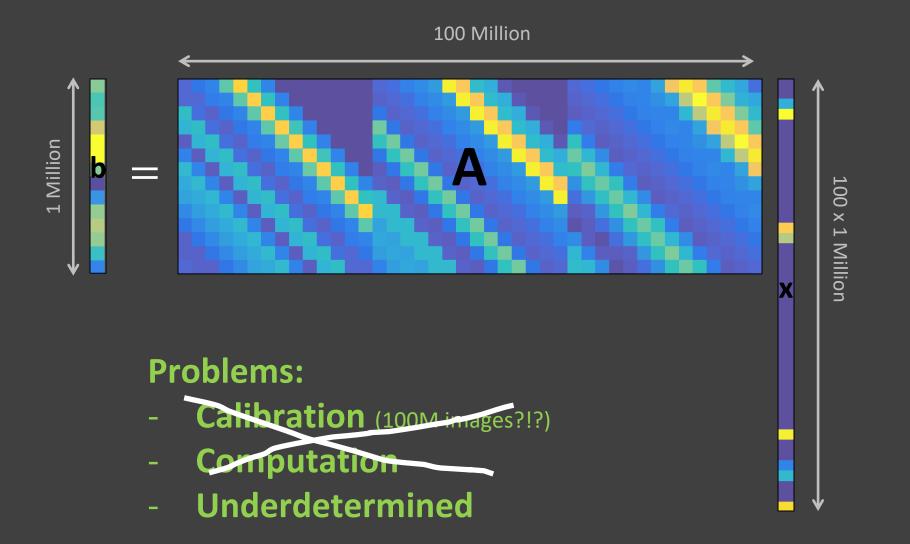
Image reconstruction is nonlinear optimization

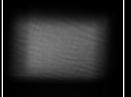
*solved with ADMM in Halide

S. Boyd, et al. *Foundations and Trends in Machine Learning* (2011) J. Ragan-Kelley, et al. *AMC SIGPLAN* (2013)

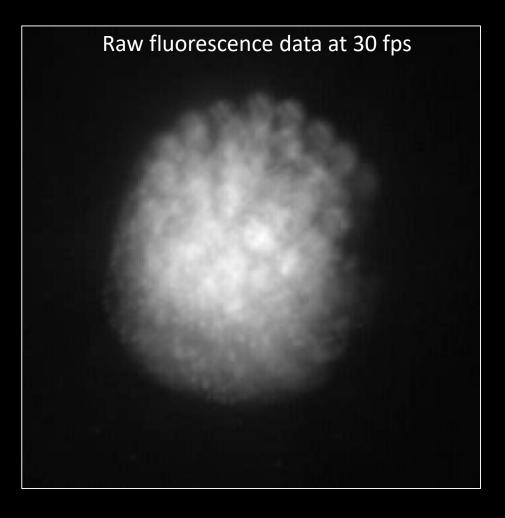


Single-shot 3D is underdetermined

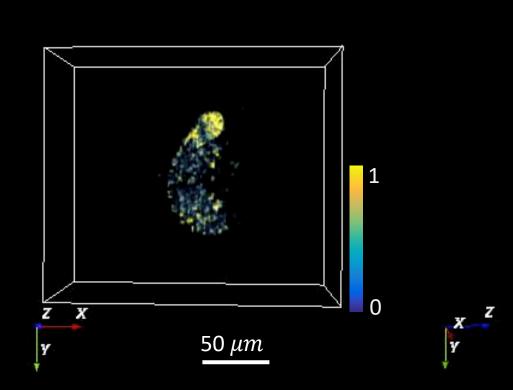


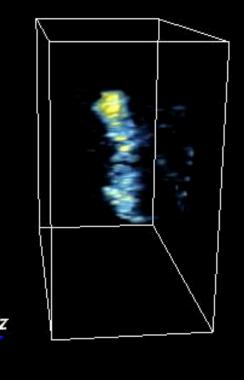


N. Antipa, G. Kuo, R. Heckel, E. Bostan, B. Mildenhall, R. Ng, L. Waller, Optica 5(1) (2017).



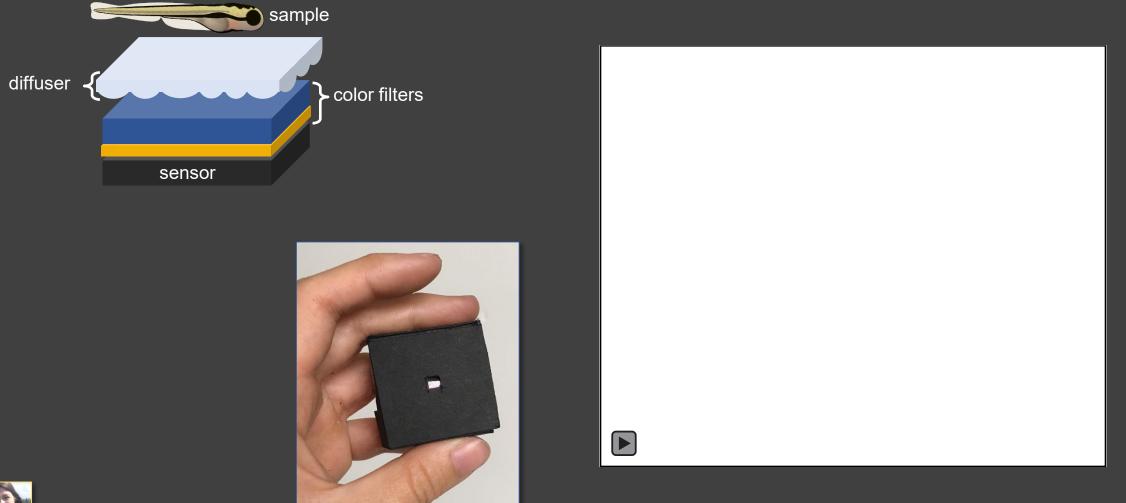
3D video reconstruction





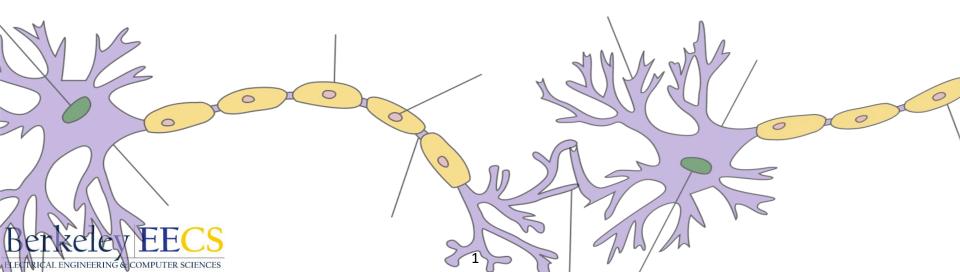
Kyrollos Yanny Nick Antipa

Neural activity tracking with flat DiffuserScope



G. Kuo, F. Liu, I. Grossrubatscher, R. Ng, L. Waller, Optics Express (2020).

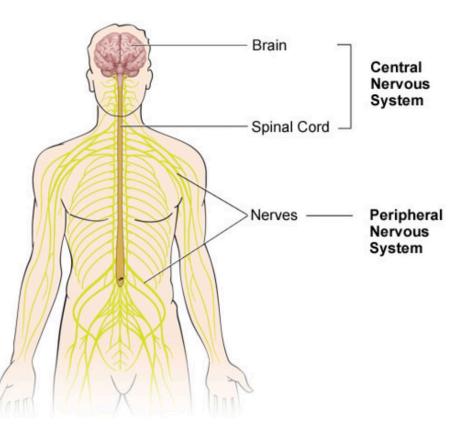
EECS 16A Neurons are Circuits!



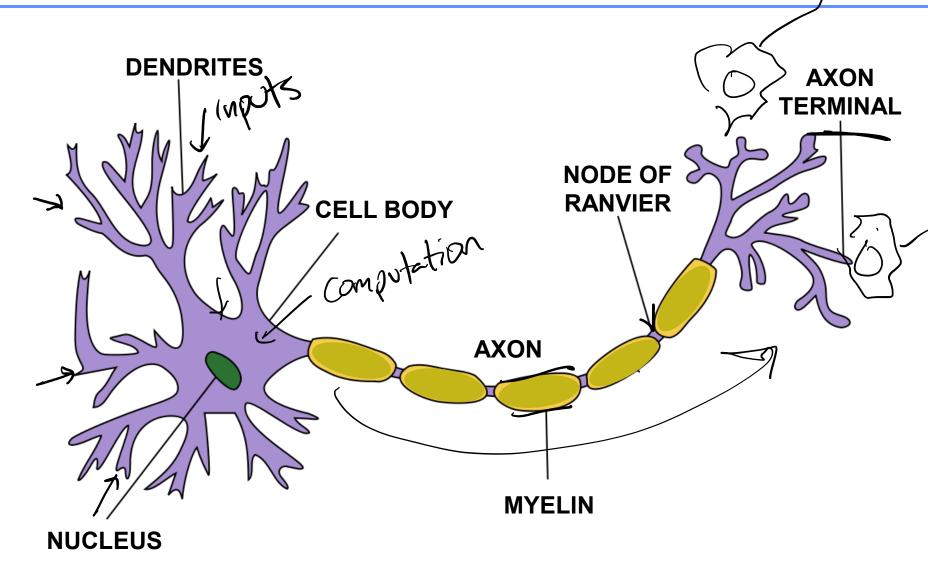
The Body Electric - Nervous System

• There are two distinct parts of the nervous system

- Central Nervous system: Brain, Spinal Cord
- Peripheral Nervous system: All other neural elements, including the peripheral nerves (motor and sensory) and the autonomic nerves (regulate internal organs)



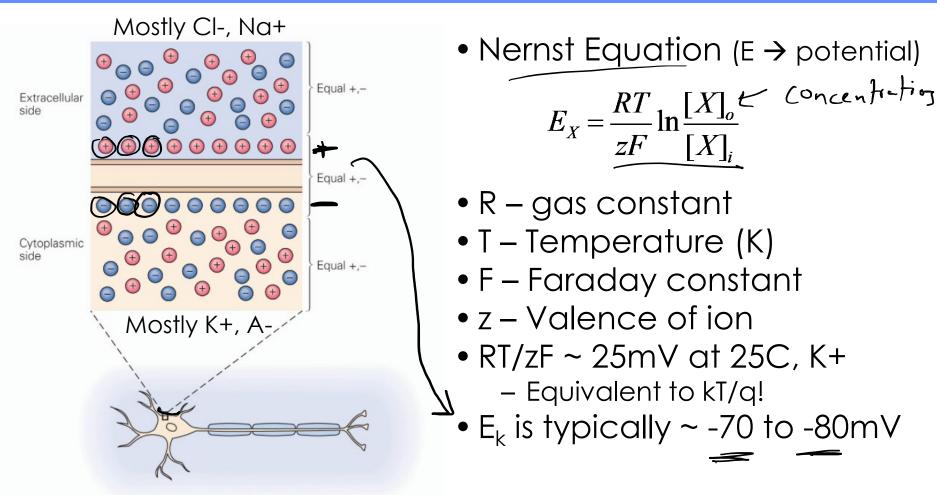
Basic Element: The Neuron



Berkeley EECS

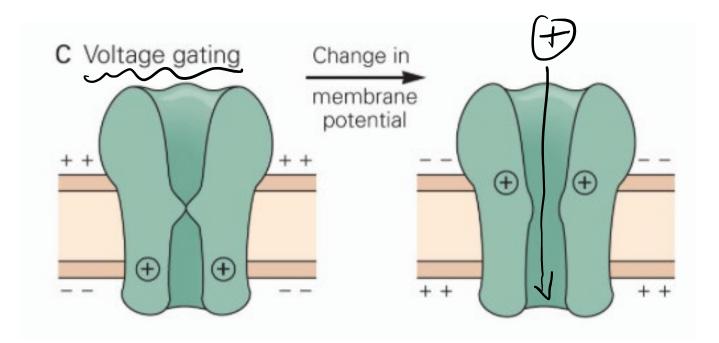
You have 100 billion of these

Resting Membrane Potential



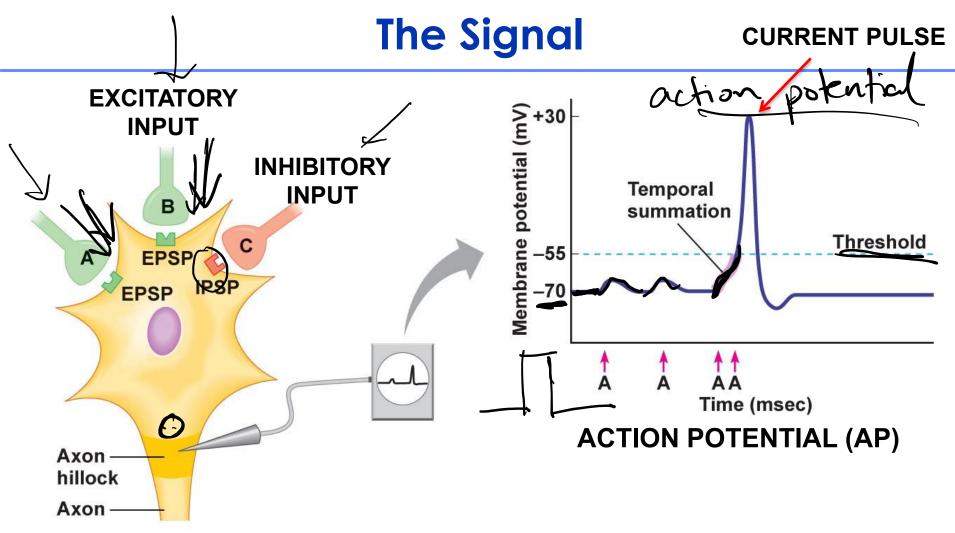
Resting channels are permeable to K+ diffusing out of the cell causing (+) charges to accumulate at the cell surface and (-) charges inside
This self limits when the electrical force negates the chemical force

Ion Channels (switches)



• There are several types of stimuli controlling ion channels opening and closing

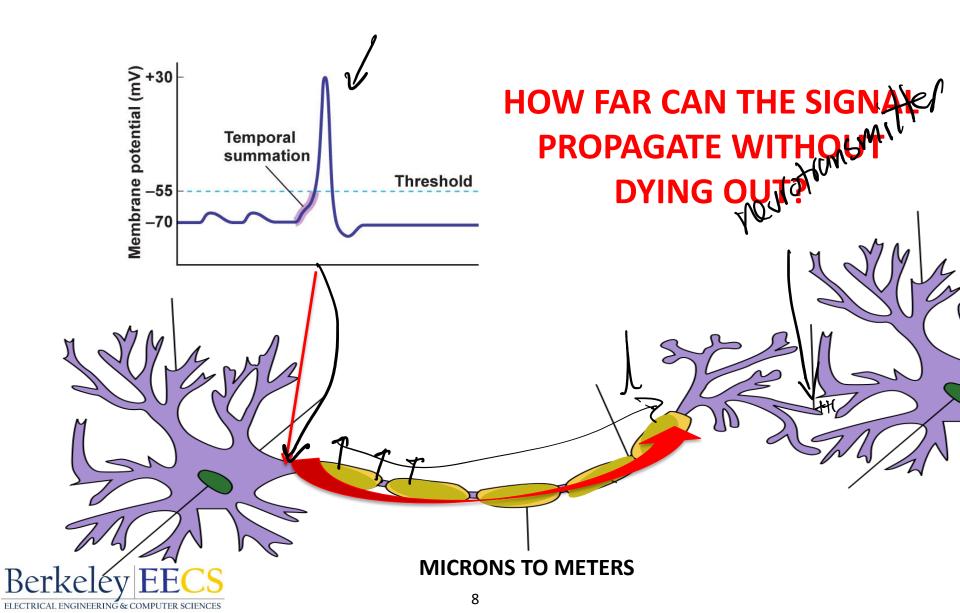
– These can be chemical, electrical or mechanical

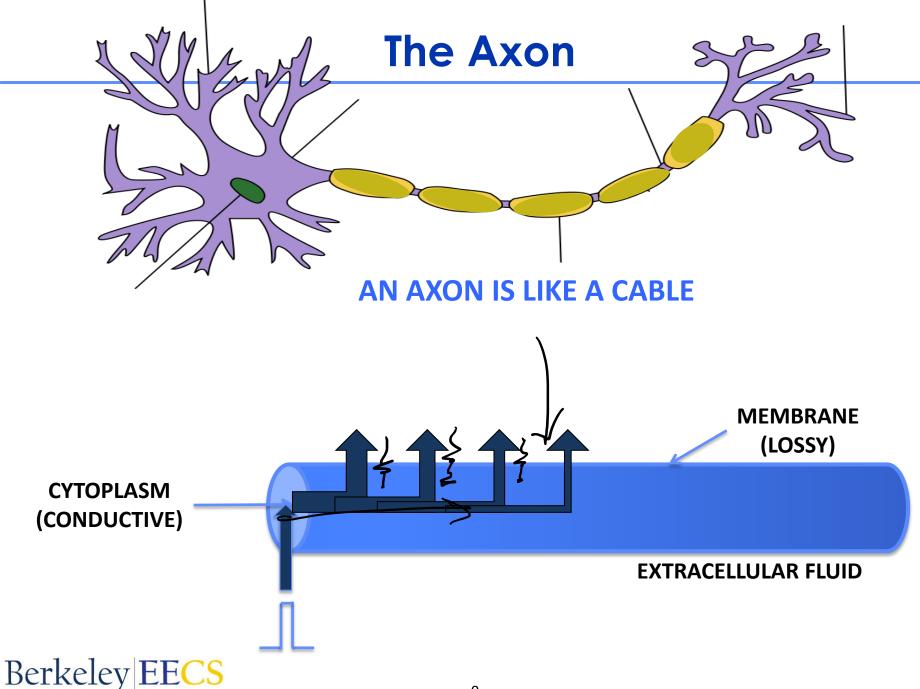


© 2011 Pearson Education, Inc.

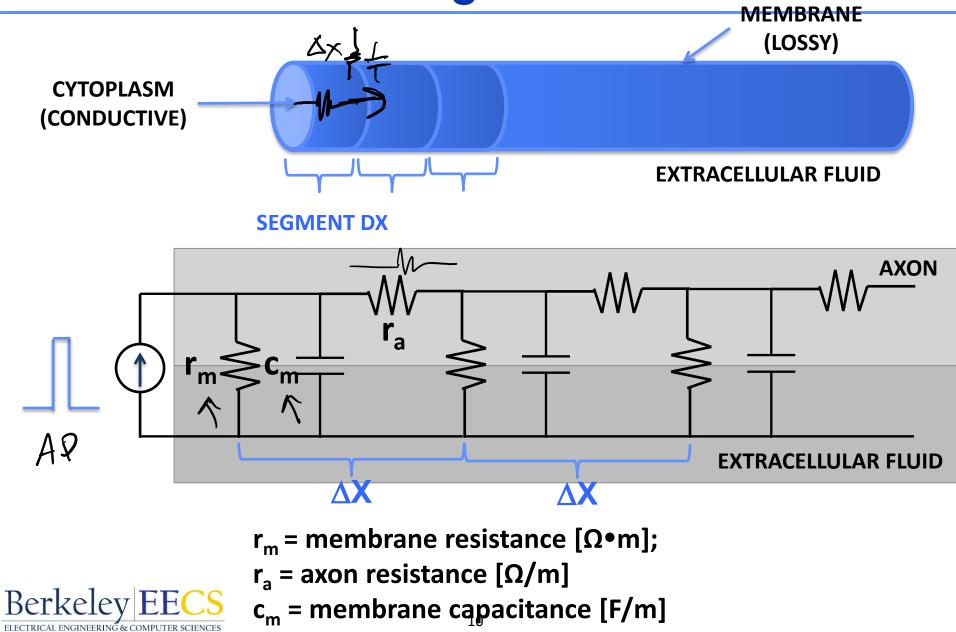
- Ion channels open in response to stimuli causing the cell to depolarize
- There is temporal and spatial summation
- Once the membrane potential goes above threshold, it starts an AP

Action Potential Propagation

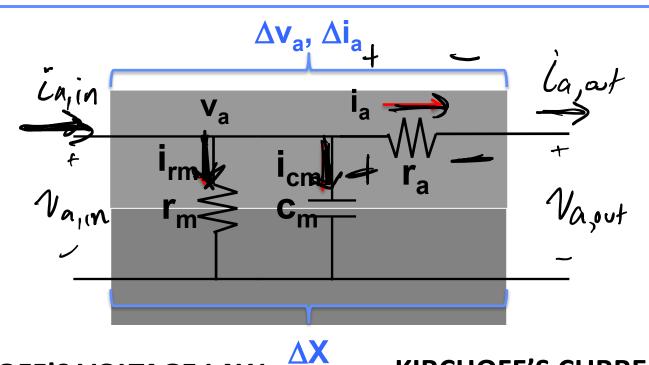




Modeling the Axon

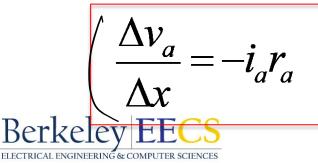


A Single Axon Segment



KIRCHOFF'S VOLTAGE LAW

$$\Delta v_a = -i_a r_a \Delta x$$

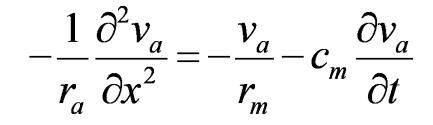


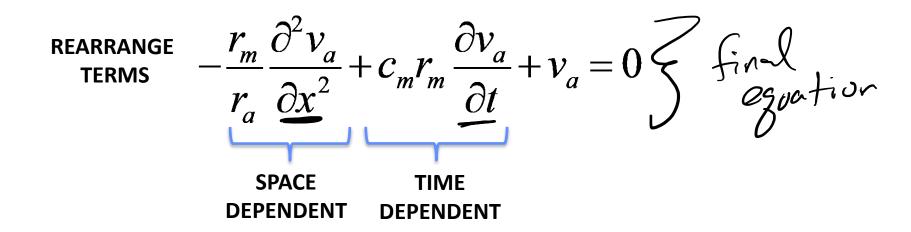
KIRCHOFF'S CURRENT LAW

$$\frac{\Delta i_a = (-i_{rm} - i_{cm})\Delta x}{\Delta i_a = -\frac{v_a}{\Delta x} - c_m \frac{\partial v_a}{\partial t}}$$

The Rest is Math 77 EECS 16B $\frac{\Delta v_a}{\Delta x} = -i_a r_a$ $\frac{\Delta i_a}{\Delta x} = -\frac{v_a}{r_m} - c_m \frac{\partial v_a}{\partial t}$ $\Delta x \rightarrow 0$ $-\frac{1}{r_a}\frac{\partial v_a}{\partial x} = i_a$ $\frac{\partial i_a}{\partial x} = -\frac{v_a}{r_m} - c_m \frac{\partial v_a}{\partial t}$ $-\frac{1}{r_a}\frac{\partial^2 v_a}{\partial x^2} = \frac{\partial i_a}{\partial x}$ $\frac{1}{r_a}\frac{\partial^2 v_a}{\partial x^2} = -\frac{v_a}{r_m} - c_m\frac{\partial v_a}{\partial t}$ Berkeley

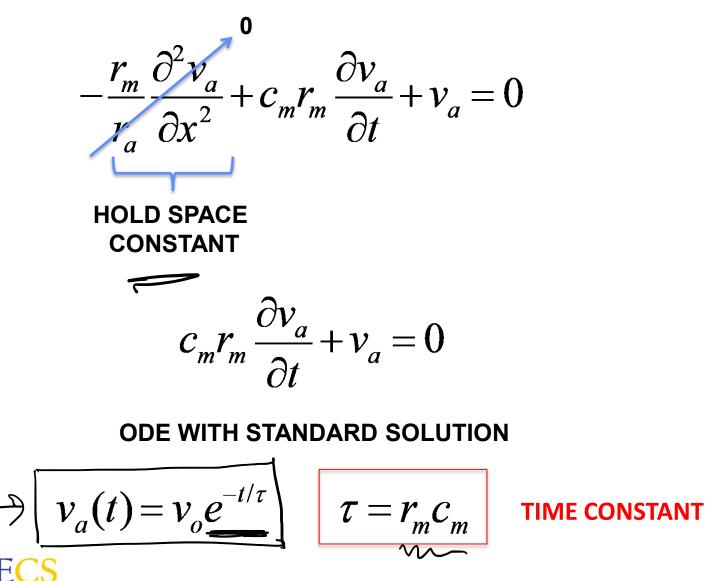
The Equation





LET'S ANALYZE ONE AT A TIME

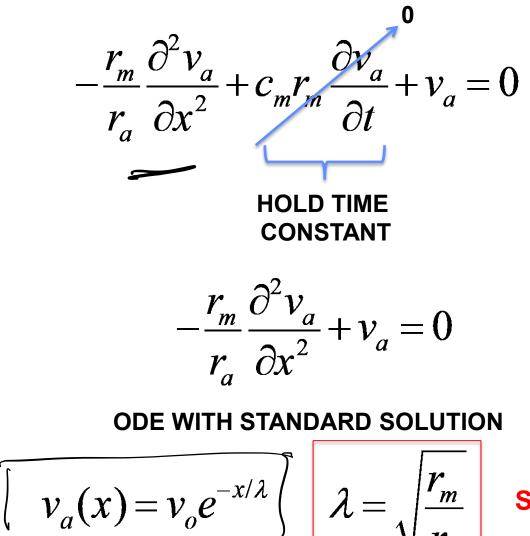
Time Dependence



14

ELECTRICAL ENGINEER

Space Dependence



SPACE CONSTANT

Berkelev

ELECTRICAL ENGIN

 r_a

What does it mean?

$$\lambda = \sqrt{\frac{r_m}{r_a}}$$
* SPACE CONSTANT
The distance it takes for a signal to decay away

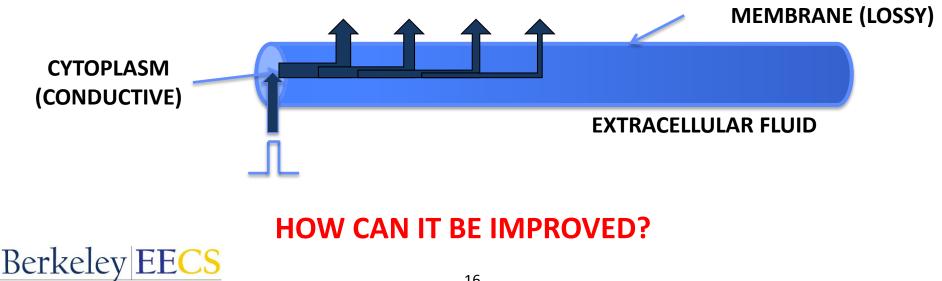
ELECTRICAL ENGINEERI

$$\int_{-\infty}^{\infty} r_m C_m$$

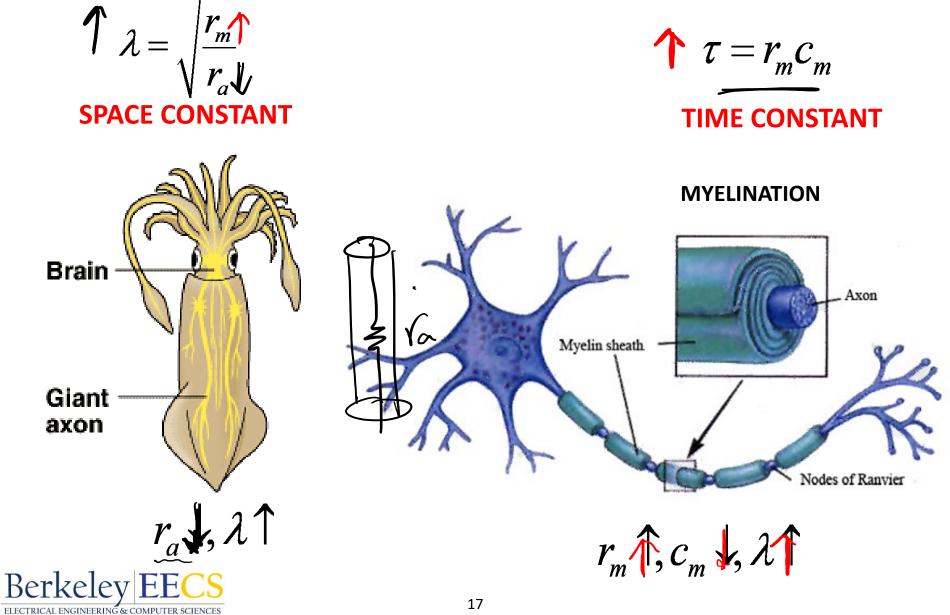
*****TIME CONSTANT

τ

The amount of time it takes for a signal to decay away



Evolution



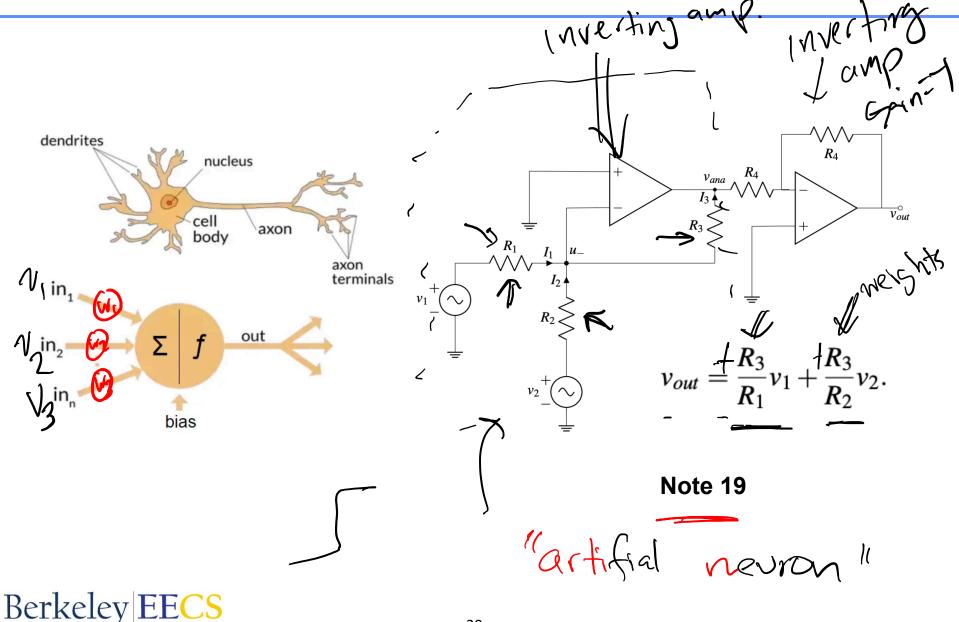
Nodes of Ranvier



What do you think Nodes of Ranvier are for? Hint: think about a digital signal propagating across a very long wire..

Neural Networks CURRENT PULSE inputs are not Membrane potential (mV) -22-02-02-02dendrites 18 ve terence nucleus Temporal summation Threshold cell axon body axon terminals in₁ DAIL Α Time (msec) out f Σ in₂ **ACTION POTENTIAL (AP)** in_n bias "refrance"

Artificial Neuron

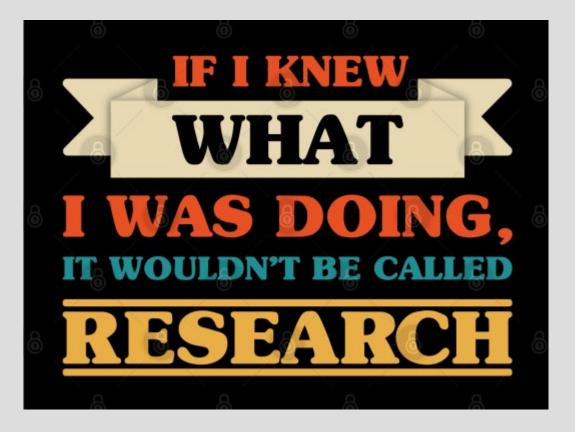


ELECTRICAL ENGIN

ER SCIENCES

How to get involved in research

- If you're interested in research:
 - Talk to your TAs
 - Talk to professors
 - Look for openings on Beehive/Dare/URAP websites



Enough about me...

- Congrats!
- What you have accomplished this semester:
 - Built a camera
 - Built two types of touchscreens
 - Built your own GPS system
- If you liked the class, please:
 - Thank your TAs!
 - apply to become one!

Learning Goals

Stuff We did:

EECS 16A

- Module 1: Introduction to systems
 - How do we collect data? build a model?
- Module 2: Introduction to circuits and design
 - How do we use a model to solve a problem
- Module 3: Introduction Signal Processing and Machine Learning
 - How do we "learn" models from data, and make predictions?

Stuff you will do next

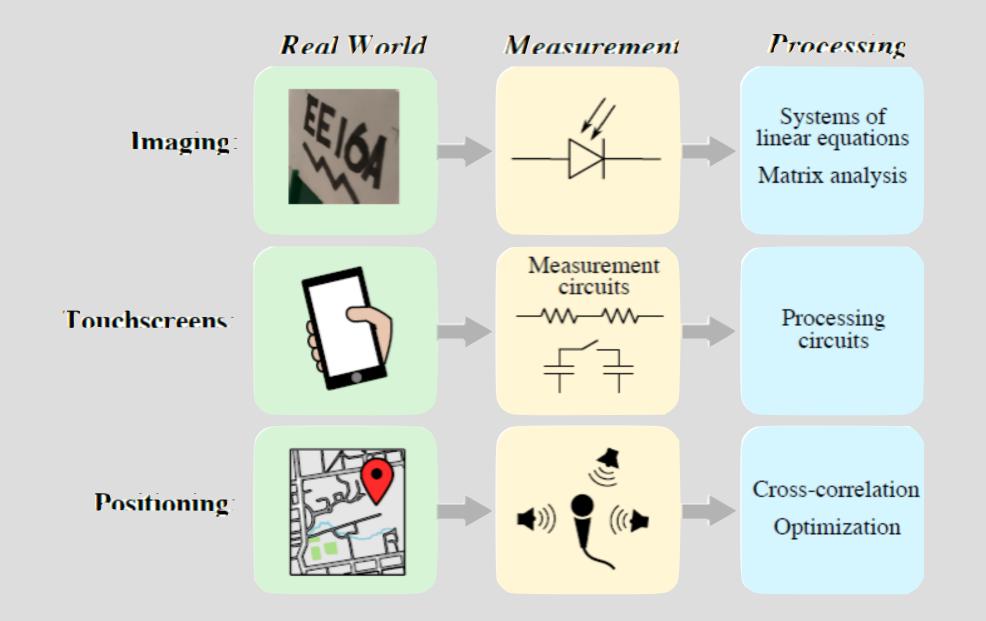
EECS 16B

- Module 4: Advanced circuit design / analysis
- Module 5: Introduction to control and robotics
- Module 6: Introduction to data analysis and signal processing



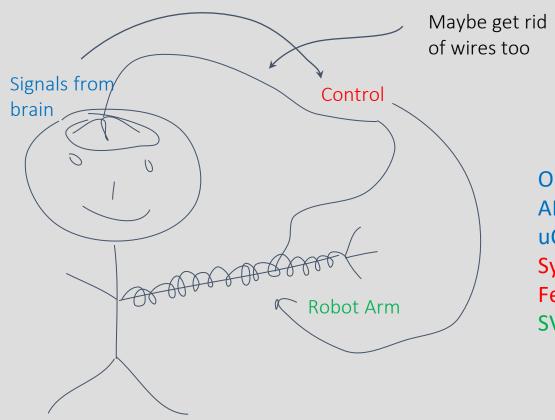
UNDERSTAND2

What you built:



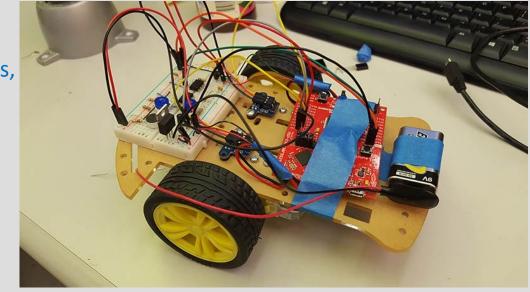
EECS16B: Designing Information Devices and Systems II

Big goal: Get signals from brain and interpret them



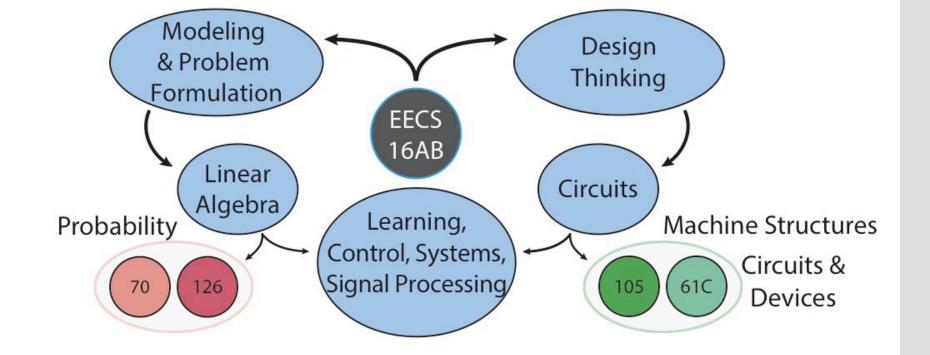
Module 1 – Circuits: Interfaces (brain, voice) Module 2 – Control: Controls (feedback, stability) Module 3 - Classification: Figuring out the intention

Voice controlled robo car lab project – from scratch!



Demo video Design Contest (make our SIXT33N better!)

OpAmp Filters, ADCs/DACs, uController, SysID, Feedback, SVD, PCA

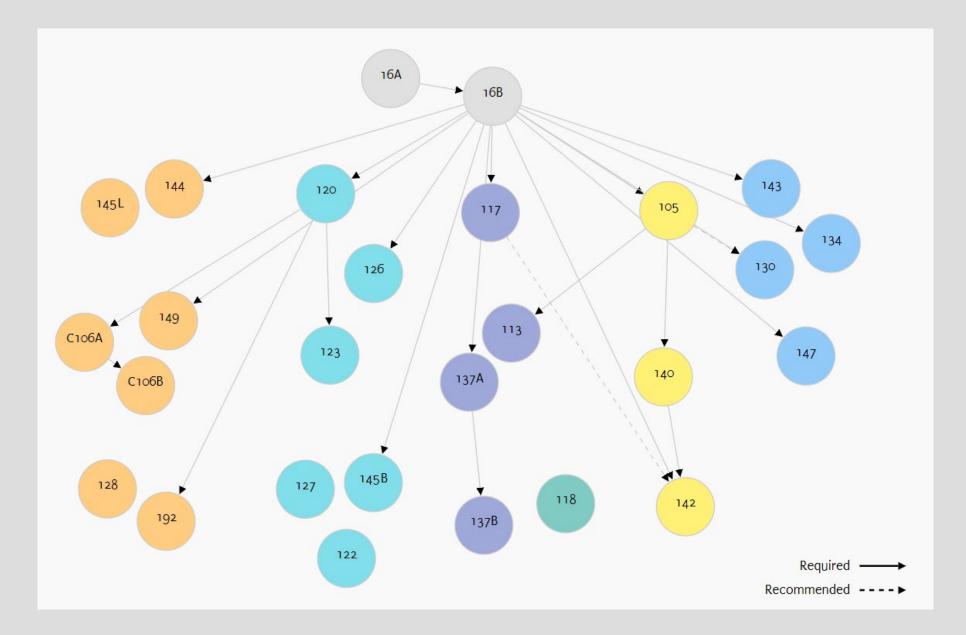


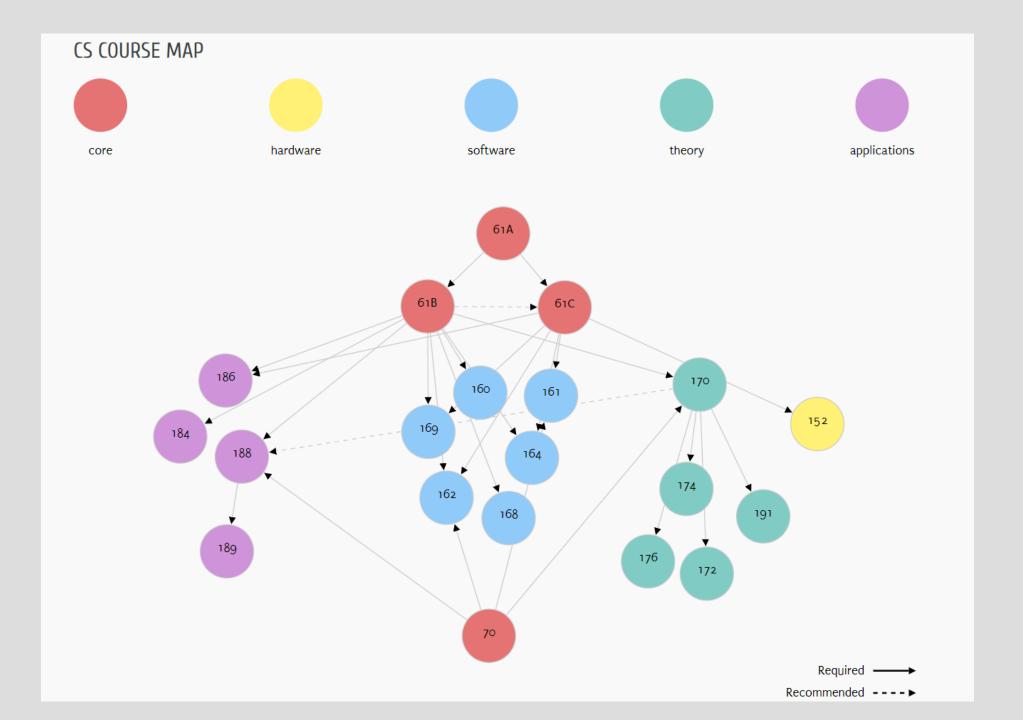
How to approach something unfamiliar and systematically build understanding

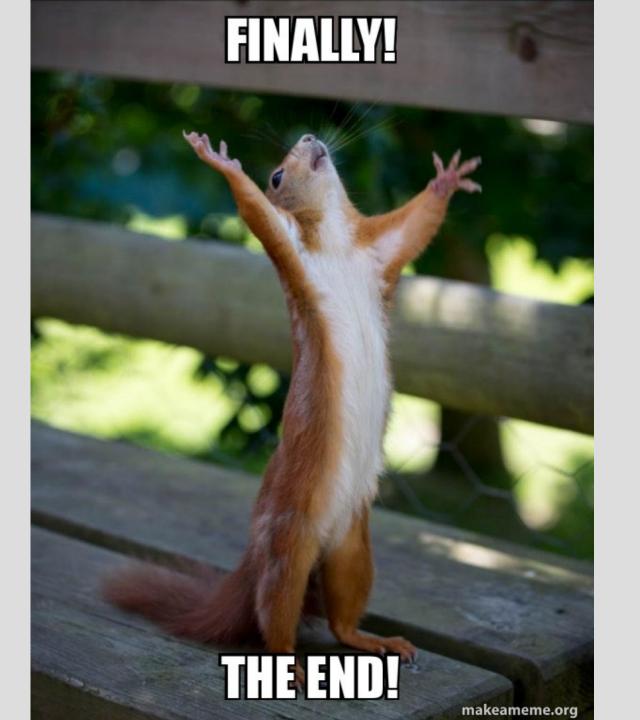
Linear Algebra: conceptual tools to model Circuits: How to go from model to design, grounded in physical world

Intro to foundational concepts in Machine Learning

EECS course map



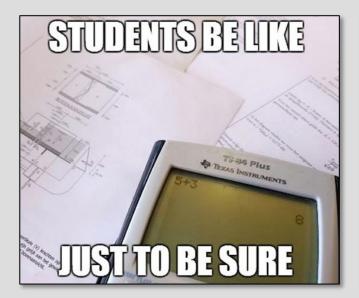




The End

Oh, except for the final exam...

IN FINAL EXAM.. WHEN YOU DON'T KNOW THE ANSWER OF QUESTION... BUT YOU CAN'T LEAVE IT BLANK



THE LAST 5 MINUTES OF EXAM

