

"I think you should be more explicit here in step two."

EECS 16A Lecture 1A Gaussian Elimination

Admin

- You should be signed up for lab already
- Lecture notes will be posted after class
- Lecture is meant to be intro, notes cover with more detail and examples, discussion helps you solidify learning and practice

Last time: linear equations

Does it satisfy superposition?

$$f(y_1+2_1) \stackrel{?}{=} f(y_1) + f(z_1)$$

 $y_1=2$
 $y_1=3$
 y_1

$$f(x) = 3x + 2$$
 $t + constant$

so it's technically not a linear egin.

BUT
$$y_1=3z+2$$
 a set of affine $y_2=5x+1$ equations is still a Linear System!

Last time: Tomography

$$y_1 = x_1 + x_2$$

 $y_2 = x_3 + x_4$
 $y_3 = x_1 + x_3$
 $y_4 = x_2 - x_4$

Ruthvhdufktzliktsuriv= Plntpxwlj FkxqdnlOlx

All our measurements were (modeled as) <u>aphdu</u>

This is called a system of linear equations

$$y_{1} = x_{1} + x_{2}$$

$$y_{2} = x_{3} + x_{4}$$

$$y_{3} = x_{1} + x_{3}$$

$$y_{4} = x_{2} + x_{4}$$

$$y_{5} \approx \sqrt{2}x_{1} + \sqrt{2}x_{4}$$

Today: how to solve this

Vectors are arrays of numbers

represents coordinates (e.g. a single point) in N-dimensional space

$$ec{x} = \left[egin{array}{c} x_1 \ x_2 \ dots \ x_N \end{array}
ight], \qquad ec{x} \in \mathbb{R}^N$$

What are the dimensions of this vector?
$$\vec{x} \in \mathbb{R}^3$$

What are the dimensions
$$\vec{x} \in \mathbb{R}^3$$
 3-dimensional $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

Vectors

• Since it's an array of numbers, it can represent other things....

What else?

Special Vectors

$$\vec{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \vec{1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \quad \vec{e_1} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \vec{e_2} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \quad \vec{e_N} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$\frac{2ero}{\text{vector}} \quad \text{ones} \quad \text{vectors}$$

A matrix is a rectangular array of numbers

$$X = \left[egin{array}{cccccc} x_{11} & x_{12} & \cdots & x_{1M} \ x_{21} & x_{22} & \cdots & x_{2M} \ dots & dots & dots \ x_{N1} & dots & dots \ x_{N2} & \cdots & x_{NM} \end{array}
ight] \, egin{array}{cccccccc} & \text{What are the dimensions of X} \ & \text{n rows and m columns means} \ & \text{it is a n x m matrix} \ & X \in \mathbb{R}^{\mathbb{N} imes \mathbb{M}} \end{array}$$

What are the dimensions of X?

$$X \in \mathbb{R}^{\mathbb{N} \times \mathbb{M}}$$

This is element (component) N2 of the matrix

Or a collection of M, N-length vectors:
$$X=\left[egin{array}{cccc} ec{x}_1 & ec{x}_2 & \cdots & ec{x}_M \end{array}
ight], \quad X\in \mathbb{R}^{\mathbb{N} imes \mathbb{M}}$$

Vectors as Matrices

A vector is a degenerate matrix

$$ec{x} = \left[egin{array}{c} 2^{x_1} \ x_1 \ dots \ x_N \end{array}
ight], \quad ec{x} \in \mathbb{R}^{N imes 1}$$

A scalar is a degenerate vector or matrix

$$a \in \mathbb{R}^{1 \times 1}$$

Some special types of matrices

zero matrix

$$\vec{\mathsf{O}} = \left| \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right|$$

identity matrix

$$I = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

diagonal matrix

upper triangular matrix

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix}$$

Ways of representing linear systems of equations

$$y_{1} = x_{1} + x_{2} = 4$$

$$y_{2} = x_{3} + x_{4} = 3$$

$$y_{3} = x_{1} + x_{3} = 2$$

$$y_{4} = x_{2} + x_{4} = 5$$

$$y_{5} = \sqrt{2}x_{1} + \sqrt{2}x_{4} = 3\sqrt{2}$$

The lazy way

Can also be represented as:

$$\left[\begin{array}{ccc|cccc}
1 & 1 & 0 & 0 & 4 \\
0 & 0 & 1 & 1 & 3 \\
1 & 0 & 1 & 0 & 2 \\
0 & 1 & 0 & 1 & 5 \\
\sqrt{2} & 0 & 0 & \sqrt{2} & 3\sqrt{2}
\end{array}\right]$$

Ways of representing linear systems of equations

Generally:
M linear equations,
N variables

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$$

$$\vdots$$

$$a_{M1}x_1 + a_{M2}x_2 + \dots + a_{MN}x_N = b_M$$

The lazy way

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1N} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2N} & b_2 \\ \vdots & \vdots & & \vdots \\ a_{M1} & a_{M2} & \cdots & a_{MN} & b_M \end{bmatrix} \text{Augmented}$$
 matrix representation

Today: Solving a linear system of equations

write in augmented matrix form:

Now solve it. How?

Start plugging equations into each other.... See what happens?

one way:
$$4 \times 2$$
 $4y + 8x = 12$
 $+1$ $4y + x = 6$
 $9x = 18$
 $x = 2 \rightarrow \text{plug into } 0$: $2 + 4y = 6$ $y = 1$ $y = 1$ $y = 1$

GOAL: to develop a <u>systematic</u> way of solving systems of equations with clear rules that *can be done by a computer*

(then you can be even lazier)

Gaussian elimination was done by human computers

What might be the variables/measurements in calculating rocket trajectories?

Position, direction of motion, tilt, power/thrust, weight...

Gaussian Elimination solves linear systems of equations

- Specifies the order in which you combine equations (rows) to "eliminate" (make zero) certain elements of the matrix
- Goal is to transform your system of equations into upper triangular

The Gaussian elimination way of solving

Old way: plug and chug equations

$$2x-y-2(x+4y)=3-2(6)$$

-9y=-9

Then plug
$$y=1$$
 into top row:
 $x+4(1)=6$
 $x=2$

What is allowed in Gaussian elimination?

These operations don't change the solution of the equations:

• Swap rows

...have the same solution!

- Multiply a row by a (nonzero)scalar
- Linear combinations of equations (adding scalar multiples of rows to other rows)

What is allowed in Gaussian elimination?

These operations don't change the solution of the equations:

- Swap rows
- Multiply a row by a (nonzero)scalar

$$2x + 3y = 4 \rightarrow 4x + 6y = 8$$
...same solution!

 Linear combinations of equations (adding scalar multiples of rows to other rows)

What is allowed in Gaussian elimination?

These operations don't change the solution of the equations:

- Swap rows
- Multiply a row by a (nonzero)scalar
- Linear combinations of equations (adding scalar multiples of rows to other rows)

To prove: look at explicit solution, show they are the same Also show the reverse — by applying the reverse operations

Upper Triangular Systems are easier to solve

Upper Triangular matrix Row Echelon form $\begin{bmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & * \end{bmatrix}$

from here, we can "back substitute" to find solution

pivots

Upper Triangular Systems are easier to solve

from here, we can "back substitute" to find solution

Gaussian Elimination in 3D

$$2y + z = 1$$

 $2x + 6y + 4z = 10$
 $x - 3y + 3z = 14$

L want to 'eliminate'
this using RI, but it's a zero!

Now divide El by 2:

upper Triangular!

Now, back substitut Then eliminate

Does it always work?

Geometric Interpretation

$$x + 4y = 6$$
$$2x - y = 3$$

Single Solution!

$$x = 2, y = 1$$

Geometric Interpretation

$$x + 4y = 6$$
$$2x + 8y = 12$$

Infinite Solutions! anything that satisfies:

$$x = 6 - 4y_0$$

Geometric Interpretation

$$x + 4y = 6$$
$$2x + 8y = 8$$

No Solutions!

Parallel lines do not intersect!

Summary: Possible situations

- Unique solution
- Infinitely many solutions (underdetermined)
- No solution (inconsistent)

Is it possible to have exactly 2 solutions?

No. consider graphically: two lines cannot intersect in exactly two places

Row echelon form after eliminating:

Row Echelon

Reduced Row Echelon

Question?

Q: For what values of k and m is the solution unique?

$$\begin{bmatrix}
1 & 5m & 1 \\
0 & 2-m & 3 \\
0 & 0 & 3k
\end{bmatrix}$$

Responses

Try Gaussian Elimination with 5 measurements

Linear system of equations

$$y_{1} = x_{1} + x_{2} = 4$$

$$y_{2} = x_{3} + x_{4} = 3$$

$$y_{3} = x_{1} + x_{3} = 2$$

$$y_{4} = x_{2} + x_{4} = 5$$

$$y_{5} = \sqrt{2}x_{1} + \sqrt{2}x_{4} = 3\sqrt{2}$$

$$\begin{bmatrix}
1 & 1 & 0 & 0 & | & 4 \\
0 & 0 & 1 & 1 & | & 3 \\
1 & 0 & 1 & 0 & | & 2 \\
0 & 1 & 0 & 1 & | & 5 \\
\sqrt{2} & 0 & 0 & \sqrt{2} & | & 3\sqrt{2}
\end{bmatrix}$$

Augmented matrix form

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 4 \\ 0 & 0 & 1 & 1 & 3 \\ 1 & 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 1 & 5 \\ \sqrt{2} & 0 & 0 & \sqrt{2} & 3\sqrt{2} \end{bmatrix}$$

Try Gaussian Elimination with 5 measurements

$$\begin{bmatrix} 1 & 1 & 0 & 0 & | & 4 \\ 0 & 0 & 1 & 1 & | & 3 \\ 1 & 0 & 1 & 0 & | & 2 \\ 0 & 1 & 0 & 1 & | & 5 \\ \sqrt{2} & 0 & 0 & \sqrt{2} & | & 3\sqrt{2} \end{bmatrix}$$

Back substitute:

$$\begin{array}{c} x_1 = 1 \\ x_2 = 3 \\ x_3 = 1 \\ x_4 = 2 \end{array}$$
 SolveD

Tomography Solved!

Reconstruction is blurred version of :

