

EECS 16A Lecture 1B Vectors, Matrices, Multiplications

Admin

- Warning: if you don't have Python experience, the lab/bootcamp will be long and hard!
 - Allocate the time, work together, don't get too discouraged

Summary: Gaussian elimination

Last time: Gaussian Elimination

- Reduce to row-echelon form, from left-to-right by using:
 - 1. Multiply an equation with nonzero scalar
 - 2. Adding a scalar constant multiple of one equation to another
 - 3. Swapping equations

Single solution

	nfi	in	ite	SO	lu	ti	0	n	
г	-1					1			

T	*	*	*	*	L	*	*	*	*
0	1	*	*	*	0	1	*	*	*
0	0	1	*	*	0	0	0	1	*
0	0	0	1	*	0	0	0	0	0

k	*	ΙΓ					
k	*						
L	*						
)	0						

0

Notice that we don't need any measurements to know whether there's a unique solution!

Then back substitute to reduced row-echelon form, from right-to-left

*

*


```
Data: Augmented matrix A \in \mathbb{R}^{m \times (n+1)}, for a system of m equations with n variables
Result: Reduced form of augmented matrix
# Forward elimination procedure:
for each variable index i from 1 to n do
    if entry in row i, column i of A is 0 then
        if all entries in column i and row > i of A are 0 then
            proceed to next variable index;
        else
            find j, the smallest row index > i of A for which entry in column i \neq 0;
            # The following rows implement the "swap" operation:
            old_row_j \leftarrow row j of A;
           row j of A \leftarrow row i of A;
           row i of A \leftarrow old_row_j;
       end
    end
    divide row i of A by entry in row i, column i of A;
   for each row index k from i + 1 to m do
        scaled_row_i \leftarrow row i of A times entry in row k, column i of A;
       row k of A \leftarrow row k of A - scaled_row_i;
   end
end
# Back substitution procedure:
for each variable index u from n - 1 to 1 do
    if entry in row u, column u of A \neq 0 then
        for each row v from u - 1 to 1 do
            scaled_row_u \leftarrow row u of A times entry in row v, column u of A;
```

row v of $A \leftarrow row v$ of $A - scaled_row_u$;

end end

end

Algorithm 1: The Gaussian elimination algorithm.

Row echelon form after eliminating:

What's the deal with free variables?

Free variables lead to parametric solutions ightarrow we can set the free variable to be anything

Solve that joke!

Solve for cats and dogs

These measurements are different linear combinations of two images.

Can you guess what the measurements are?

Top: 0.6 (dog) + 0.4 (cat) Bottom: 0.6 (cat) + 0.4 (dog)

Can I solve for both images from just these two linearly combined images? Just one? None? How many images do I need minimum?

Two images is enough if they're linearly independent at each pixel!

What are the ideal measurements?

Depends. Maybe direct measurements?

measurements

Solve for cats and dogs

+01 0 +1 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0$ How to solve it?

measurements

Solve for cats and dogs

0.6 +0.4+0.60.4 → 3a-2b

measurements

Drawing vectors graphically

What is the sum of the two vectors?

Which of these apply?

Commutativity: $\vec{x} + \vec{y} = \vec{y} + \vec{x}$ Associativity: $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$ Additive identity: $\vec{x} + \vec{0} = \vec{x}$ Additive inverse: $\vec{x} + (-\vec{x}) = \vec{0}$

Adding matrices

$$\vec{\mathbf{x}}_1 = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$
$$\vec{\mathbf{x}}_2 = \begin{bmatrix} -1 & 0 \\ 3 & 2 \end{bmatrix}$$

$$\vec{\mathbf{x}}_{1} + \vec{\mathbf{x}}_{2} = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 3 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 2 - 1 & 1 + 0 \\ 3 + 3 & 4 + 2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 6 & 6 \end{bmatrix}$$

To add matrices, add each corresponding element!

What if they are not same dimensions?

Then you cannot add them.

Vector transpose

$$\vec{x} = \begin{bmatrix} x_1 \\ x_1 \\ \vdots \\ x_N \end{bmatrix} \longrightarrow \vec{x}^T = \begin{bmatrix} x_1 & x_1 & \cdots & x_N \end{bmatrix}$$

What are the dimensions? $\vec{x} \in \mathbb{R}^{N \times 1}$ $\vec{x}^T \in \mathbb{R}^{1 \times N}$

Matrix transpose \rightarrow swap the rows with the columns

What are the dimensions? $X \in \mathbb{R}^{N \times M}$

 $X^T \in \mathbb{R}^{M \times N}$

If the elements of the matrix $A \in \mathbb{R}^{N \times M}$ are a_{ij} The elements of $A^T \in \mathbb{R}^{M \times N}$ are a_{ji} Matrix transpose is not (generally) an inverse!

Scaling vectors

A vector multiplied by a scalar multiplies all elements of the vector by the scalar.

Scaling matrices

$$\mathbf{x}_1 = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} \in \mathbb{R}^2$$

What is $\alpha \mathbf{X}_{1}$? $\alpha \mathbf{X}_{1} = \alpha \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3\alpha & 2\alpha \\ \alpha & 4\alpha \end{bmatrix}$

A matrix multiplied by a scalar multiplies all elements of the matrix by the scalar.

Multiplying matrices/vectors

Vector-Vector Multiplication

- Multiplication is valid only for specific matching dimensions!
- Multiply row elements of first by column elements of second, then add

and like that!

Vector Vector Multiplication

Like this....

Like this....

and like that!

Matrix-Vector Multiplication

 $A \in R^{M \times N}, \vec{x} \in \mathbb{R}^{N \times 1}$

Like this....

and like that!

 $A \in R^{M \times N}, B \in \mathbb{R}^{N \times L}$

Result at location $2x^2 = a_{21}b_{12} + a_{22}b_{22} + \dots + a_{2N}b_{N2}$

Multiplying matrices/vectors

Matrix Matrix Multiplication

Like this....

and like that!

Matrix multiply test

Responses:

Given:

 $A \in \mathbb{R}^{M \times L}$ $B \in \mathbb{R}^{N \times L}$

Which of the following is a valid multiplication?

◯ AB

O BA

A'B (A transpose B)

AB' (A B transpose)

Systems of equations

Row view

What do rows represent?

How much the variables affect a particular measurement.

Column view

What do columns represent?

How much a particular variable affects all measurements (sensitivity to that variable).

What if one a-vector is zeros?

Then that variable not measured (could be anything)! No unique solution

My Research uses linear algebra

Computational Imaging: joint design of hardware and software

Computational imaging pipeline

DiffuserCam: tape a diffuser onto a sensor

Lenses map a point to a point

Diffuser maps points to many points (linear combination!)

Traditional cameras take direct measurements

Computational cameras can multiplex

raw sensor data

recovered scene

raw sensor data

recovered scene

recovered scene

raw sensor data

El cheapo version – ScotchTapeCam!

https://waller-lab.github.io/DiffuserCam/

