

EECS 16A Lecture 1B

Vectors, Matrices, Multiplications

Admin

- Warning: if you don't have Python experience, the lab/bootcamp will be long and hard!
- Allocate the time, work together, don't get too discouraged

Last time: Gaussian Elimination

- Reduce to row-echelon form, from left-to-right by using:

1. Multiply an equation with nonzero scalar
2. Adding a scalar constant multiple of one equation to another
3. Swapping equations

Single solution
$\left[\begin{array}{cccc|c}1 & * & * & * & * \\ 0 & 1 & * & * & * \\ 0 & 0 & 1 & * & * \\ 0 & 0 & 0 & 1 & *\end{array}\right]$

Infinite solutions
$\left[\begin{array}{llll|l}1 & * & * & * & * \\ 0 & 1 & * & * & * \\ 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Notice that we don't need any measurements to

know whether there's a unique solution!

- Then back substitute to reduced row-echelon form, from right-to-left

Single solution
$\left[\begin{array}{llll|l}1 & Q & 0 & 0 & * \\ Q & 1 & 0 & 0 & * \\ 0 & Q & 1 & 0 & * \\ 0 & 0 & & 1 & *\end{array}\right]$

Infinite solutions

Pivots

Data: Augmented matrix $A \in \mathbb{R}^{m \times(n+1), \text {, for a system of } m \text { equations with } n \text { variables }}$ Result: Reduced form of augmented matrix
\# Forward elimination procedure:
for each variable index i from 1 to n do
if entry in row i, column i of A is 0 then
if all entries in column i and row $>i$ of A are 0 then
proceed to next variable index;
else
find j, the smallest row index $>i$ of A for which entry in column $i \neq 0$
\# The following rows implement the "swap" operation:
old_row_j \longleftarrow row j of A;
row j of $A \longleftarrow$ row i of A;
row i of $A \longleftarrow$ old_row_j;
end
end
divide row i of A by entry in row i, column i of A;
for each row index k from $i+1$ to m do
scaled_row_i \longleftarrow row i of A times entry in row k, column i of A;
row k of $A \longleftarrow$ row k of $A-$ scaled_row_i;
end
end
\# Back substitution procedure:
for each variable index u from $n-1$ to 1 do
if entry in row u, column u of $A \neq 0$ then
for each row v from $u-1$ to 1 do
scaled_row_u \longleftarrow row u of A times entry in row v, column u of A;
row v of $A \longleftarrow$ row v of $A-$ scaled_row_u;
end
end
end

Algorithm 1: The Gaussian elimination algorithm.

Row echelon form after eliminating：

Row Echelon

$$
\left[\begin{array}{cccc|c}
1 & * & * & * & * \\
0 & 1 & * & * & * \\
0 & 0 & 1 & * & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

＇leading coefficient＇－first nonzero entry in a row（looking lefttoright）
\rightarrow should be to right of the one in pres．rows
\rightarrow doesn＇t have to $=1$

Reduced Row Echelon（ $\left.\begin{array}{l}\text { after } \\ \text { backsub．}\end{array}\right)$

$$
\text { Pivots [}\left[\begin{array}{cccc|c}
1 & 0 & 0 & * & * \\
0 & 1 & 0 & * & * \\
0 & 0 & 1 & * & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

ヘケ 个 个 basic free variable variable
\rightarrow Each column \bar{w} leading 1 has zeros everywhere else
\rightarrow rows can have more $\$ s$ if free var．
Getting to this form doesn＇t mean solvable！

What's the deal with free variables?
Free variables lead to parametric solutions \rightarrow we can set the free variable to be anything

Example:

$$
\left[\begin{array}{llll|l}
1 & 0 & 0 & 1 & 3 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right] \begin{aligned}
& x_{1}+x_{4}=3 \\
& x_{2}=0 \\
& x_{3}=1
\end{aligned}
$$

-what's up with this?
Free variable!
we can pick $x_{4}=t$

$$
\begin{aligned}
& \text { pick } x_{4}=t \\
& x_{1}+t=3 \\
& x_{1}=3-t
\end{aligned} \rightarrow \vec{x}=\left[\begin{array}{c}
3-t \\
0 \\
1 \\
t
\end{array}\right] \begin{gathered}
\text { "parametric } \\
\text { solution" } \\
\rightarrow \begin{array}{c}
\text { any } t \text { works, } \\
\text { plug it in to solve }
\end{array}
\end{gathered}
$$

Solve that joke!

$$
\begin{aligned}
& \begin{aligned}
& {\left[\begin{array}{ccc|c}
x & y & z & 3 \\
1 & 2 & 1 & 3 \\
3 & -2 & -4 & 4 \\
-2 & -4 & -2 & 5
\end{array}\right] } \\
& R 2-3 R[{\left[\begin{array}{ccc|c}
1 & 2 & 1 & 3 \\
0 & -8 & -7 & -5 \\
0 & 0 & 0 & 11
\end{array}\right] } \\
& 0=11(\because) \\
& \text { Wrong! (Inconsistent) }
\end{aligned}
\end{aligned}
$$

Solve for cats and dogs

These measurements are different linear combinations of two images.

Can you guess what the measurements are?
Top: 0.6 (dog) + 0.4 (cat)
Bottom: 0.6 (cat) +0.4 (dog)

Can I solve for both images from just these two linearly combined images? Just one? None?

How many images do I need minimum?
Two images is enough if they're
linearly independent at each pixel!
measurements

What are the ideal measurements?
Depends. Maybe direct measurements?

Solve for cats and dogs

measurements

$+0$

$$
+1
$$

How to solve it? $\left[\begin{array}{ll|l}1 & 0 & 2(2) \\ 0 & 1 & 0 \text { dog }\end{array}\right] \leftarrow$ cat

Solve for cats and dogs

measurements

Drawing vectors graphically

$$
\begin{gathered}
\vec{a}=\left[\begin{array}{l}
3 \\
2
\end{array}\right] \in \mathbb{R}^{2} \\
\vec{b}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \in \mathbb{R}^{2}
\end{gathered}
$$

What is the sum of the two vectors?

$$
\begin{aligned}
& \vec{a}=\left[\begin{array}{l}
3 \\
2
\end{array}\right] \in \mathbb{R}^{2} \\
& \vec{b}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \in \mathbb{R}^{2} \\
& \\
& \begin{aligned}
\text { To add vectors, add each } \\
\text { corresponding element! }
\end{aligned} \\
& \\
& \\
& =\left[\begin{array}{l}
3-2 \\
2+1
\end{array}\right] \\
&
\end{aligned} \begin{aligned}
& =\left[\begin{array}{l}
3 \\
2
\end{array}\right]+\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
\end{aligned}
$$

Which of these apply?

$\sqrt{ }$ Commutativity: $\quad \vec{x}+\vec{y}=\vec{y}+\vec{x}$
\checkmark Associativity: $\quad(\vec{x}+\vec{y})+\vec{z}=\vec{x}+(\vec{y}+\vec{z})$
$\checkmark \cdot$ Additive identity: $\vec{x}+\overrightarrow{0}=\vec{x}$
$\sqrt{ } \cdot$ Additive inverse: $\vec{x}+(-\vec{x})=\overrightarrow{0}$

Adding matrices

$$
\begin{aligned}
& \overrightarrow{\mathrm{x}}_{1}=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right] \\
& \overrightarrow{\mathrm{x}}_{2}=\left[\begin{array}{cc}
-1 & 0 \\
3 & 2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{\mathrm{x}}_{1}+\overrightarrow{\mathrm{x}}_{2} & =\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right]+\left[\begin{array}{cc}
-1 & 0 \\
3 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
2-1 & 1+0 \\
3+3 & 4+2
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1 \\
6 & 6
\end{array}\right]
\end{aligned}
$$

To add matrices, add each corresponding element!

Vector transpose

$$
\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{1} \\
\vdots \\
x_{N}
\end{array}\right] \quad \vec{x}^{T}=\left[\begin{array}{llll}
x_{1} & x_{1} & \cdots & x_{N}
\end{array}\right]
$$

What are the dimensions? $\quad \vec{x} \in \mathbb{R}^{N \times 1}$
$\vec{x}^{T} \in \mathbb{R}^{1 \times N}$

Matrix transpose \rightarrow swap the rows with the columns

$$
\begin{aligned}
& \qquad \overrightarrow{\mathbf{X}}=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right] \\
& \overrightarrow{\mathbf{X}}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] \\
& \overrightarrow{\mathbf{X}}^{T}=\left[\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right] \\
& \text { What are the dimensions? } \quad \mathrm{X} \in \mathbb{R}^{N \times M}
\end{aligned} \quad \begin{aligned}
& \overrightarrow{\mathbf{X}}^{T}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \\
& \text { If the elements of the matrix } A \in \mathbb{R}^{N \times M} \text { are } a_{i j} \\
& \text { The elements of } A^{T} \in \mathbb{R}^{M \times N} \text { are } a_{j i} \\
& \text { Matrix transpose is not (generally) an inverse! }
\end{aligned}
$$

Scaling vectors

$$
\overrightarrow{\mathrm{x}}_{1}=\left[\begin{array}{l}
3 \\
2
\end{array}\right] \in \mathbb{R}^{2}
$$

What is $\alpha \overrightarrow{\mathbf{X}}_{1}$?

$$
\alpha \overrightarrow{\mathrm{X}}_{1}=\alpha\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
\alpha 3 \\
\alpha 2
\end{array}\right]
$$

A vector multiplied by a scalar multiplies all elements of the vector by the scalar.

Scaling matrices

$$
\mathrm{X}_{1}=\left[\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right] \quad \in \mathbb{R}^{2}
$$

$$
\begin{aligned}
& \text { What is } \alpha \mathrm{x}_{1} \text { ? } \\
& \alpha \mathrm{X}_{1}=\alpha\left[\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right]=\left[\begin{array}{cc}
3 \alpha & 2 \alpha \\
\alpha & 4 \alpha
\end{array}\right]
\end{aligned}
$$

A matrix multiplied by a scalar multiplies all elements of the matrix by the scalar.

Multiplying matrices/vectors

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
a_{21} & & a_{2 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{ccc}
b_{11} & \cdots & b_{1 p} \\
b_{21} & & b_{2 p} \\
\vdots & \ddots & \vdots \\
b_{n 1} & \cdots & b_{n p}
\end{array}\right]=\left[\begin{array}{ccc}
c_{11} & \cdots & c_{1 p} \\
c_{21} & & c_{2 p} \\
\vdots & \ddots & \vdots \\
c_{m 1} & \cdots & c_{m p}
\end{array}\right]} \\
& m \times p
\end{aligned}
$$

Vector-Vector Multiplication

- Multiplication is valid only for specific matching dimensions!
- Multiply row elements of first by column elements of second, then add

Like this....

and like that!

Vector Vector Multiplication

Like this....

and like that!

Matrix-Vector Multiplication

$$
A \in R^{M \times N}, \vec{x} \in \mathbb{R}^{N \times 1}
$$

Matrix-Matrix Multiplication

```
A\in R
```


and like that!

Result at location $2 \times 2=a_{21} b_{12}+a_{22} b_{22}+\cdots+a_{2 N} b_{N 2}$

Multiplying matrices/vectors

MATRIX MULTIPLICATION IS NOT COMMUTATIVE.
$\left[\begin{array}{ccc}65 & 2 & 23 \\ 65 & 4 & 11 \\ 2 & 24 & 45\end{array}\right] \times\left[\begin{array}{ccc}25 & 4 & 71 \\ 42 & 44 & 55 \\ 44 & 14 & 5\end{array}\right]$
$\left[\begin{array}{ccc}25 & 4 & 71 \\ 42 & 44 & 55 \\ 44 & 14 & 5\end{array}\right] \times\left[\begin{array}{ccc}65 & 2 & 23 \\ 65 & 4 & 11 \\ 2 & 24 & 45\end{array}\right]$

Matrix Matrix Multiplication

Vector Vector Multiplication

Does not commute!

Also known as "inner product" or "dot product"

$$
\left.\vec{x} \vec{y}^{\boldsymbol{T}}=\quad \begin{array}{|c|c|ccc}
x_{1} & y_{1} y_{2} \cdots y_{N} \\
x_{2} & \\
\vdots & \\
x_{N} & \\
\hline
\end{array}\right]\left[\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \cdots & x_{1} y_{N} \\
x_{2} y_{1} & x_{2} y_{2} & \cdots & x_{2} y_{N} \\
\vdots & \vdots & \cdots & \vdots \\
x_{N} y_{1} & x_{N} y_{2} & \cdots & x_{N} y_{N}
\end{array}\right] N \times N
$$

Also known as "outer product"

Matrix multiply test

Responses:
$A \in \mathbb{R}^{M \times L}$
Given:

Which of the following is a valid multiplication?$A B$BA$A^{\prime} B(A$ transpose $B)$$A B^{\prime}$ (A B transpose)

Systems of equations

Row view

What do rows represent?
How much the variables affect a particular measurement.

Column view

What do columns represent?
How much a particular variable affects all measurements (sensitivity to that variable).

What if one a-vector is zeros? Then that variable not measured (could be anything)! No unique solution

My Research uses linear algebra

Computational Imaging: joint design of hardware and software

Computational imaging pipeline

Hardware design
Take picture
Crunch Data
Final result

$$
\rightarrow \square
$$

DiffuserCam: tape a diffuser onto a sensor

Lenses map a point to a point

Diffuser maps points to many points (linear combination!)

Traditional cameras take direct

 measurements

Computational cameras can multiplex

raw sensor data

recovered scene

raw sensor data

recovered scene

raw sensor data

recovered scene

El cheapo version - ScotchTapeCam!

