Theorem:
a cat has nine tails.
- Proof:
No cat has eight tails. A
cat has one tail more
than no cat
therefore, a cat has
nine tails.
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Proofs, Span, Linear Dependence




Last time: Vector-Vector Multiplication 2% own 2 nnerproduct

or “dot product”

Like this.... and like that!
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Last time: Vector-Vector Multiplication

Like this.... and like that!

il [ 4

14 0 _
5 — 2_-\4—\-0"'0‘3"'\'4 A7)

= 1\




Like this.... and like that!

Last time: Matrix-Matrix multiply
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Some practice
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Like this.... and like that!
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Systems of equations 4y =)
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Last time: Row view

2% a,, 'xl bl Q“I. + Otnx)j - amI,\ _ b.
’ =
azl 2” x2 _ b2 :> Q,z,‘ I, t QZZ IZ + ... an'x,\ bL
: ; '. - s
aml amn b am‘x’ 1— GMin + ”. qmn . o
_xﬂ_ | m_]

M XN nxl  mxl1



Last time: Column view
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Row vs Column Perspective

-
-

 Column Perspective of Ax = b
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Linear combination of vectors

- - -

- Given set of vectors {a4, a,, -, ay} € RY, and coefficients {a, ay, -, ay} € R

-

* A linear combination of vectors is defined as: b = a;a; + a,a, + -+ ayay

aij;p; ai2 Q13 X1 oy
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= Z101 + T2a2 + 7303

Matrix-vector multiplication is a linear combination of the columns of Al



Linear combinations of vectors to play bumper cars




Linear Set of Equations as a Linear Combination

» Consider the problem: Ax = b:
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Linear Set of Equations as a Linear Combination

Sl

» Consider the problem: Ax = b:
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Hmmm... | think so!



Linear Set of Equations as a Linear Combination

» Consider the problem: Ax = b:
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On no I’'m stuck on a line! @



Linear Set of Equations as a Linear Combination

» Consider the problem: Ax =

1 1
1 0
a; da,

Yes now | can!
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(Span) Column Space / Range ~ Tergon ALERTLL

—

Span of the columns of A is the set of all vectors b such that Ax = b
has a solution (doest't need fo be uriqe)

- the set of all vectors that can be reached by all possible linear combinations of the columns of A
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Span / Column Space / Range

Span of the columns of A is the set of all vectors b such that A% = b

has a solution

- the set of all vectors that can be reached by all possible linear combinations of the columns of A

1 -1
A:[l ~1

The line x4 = x>

span(cols of A) = {17’ U=« [
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Span / Column Space / Range

* Definition:
f3 X st A% = hthen b € span{cols(4)}

Q: What if b & span{cols(4)}?

A: There is no solution for Ax = b




Examples

- 2 - 0
what is the span of: x.c[él ) X" [B‘X y L= [ 27
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» What are the values of a, b, ¢ such that the Span{Cols of A) = RS

1 1 a
A=|-1 1 b
0 0 c

() a#0,b=1,c=1

(O a=0,b#1,c=1

(O a=0,b=1,c=1

(O a#0,b#0,c#0

Responses

() All of the above


https://docs.google.com/forms/d/1-vLSLrVODHS7frIjNAQaWYUlkh-3If1_CNdnz9i1c_w/edit#responses
https://forms.gle/37dFB355QhUyLuCw9

Steps for a proof

« Write out the statement, note direction (“if’ — “then”)

* Try a simple example (to see a pattern)
- Use what is known, definitions and other theorems

* Manipulate both sides of the arguments
- Must justify each step

* Know the different styles of proofs to try
- Constructive

- Proof by contradiction Tf You, want fo ot
mtd hardeofe  prooks

Ly €870
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OCCURS . -?«___ -

F

*I think you should be more explicit here in
step two.’



Example proof: operations for solving a linear equation

* Prove the basic operations don’t change a solution:
1. Multiply an equation with nonzero scalar

2x + 3y = 4 has the same solution as: 4x + 6y = 8
Proof for N=2:

Let ax + by = c, with solution X, Vg fax + by = [c, with solution: X1, V4
= axo +byo =c¢ = Bax; + Bby; = fc
Show that fax + Bby = fc,

_ Show that ax + by = c,
has the same solution.

has the same solution.....

Substitute x, Vo for x, y: Since f # 0....
pax, + Bbyy = fc fax; + by, = fc = axy + by, =c
p(axo + byo) = Be SOLUTION OF ONE, IMPLIES THE OTHER

- |
ffc = [fc Butis it the only solution? AND VICE-VERSA!



Proof: Span &
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Proof: Span

Need to solve:
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Linear Dependence

Recall:
1 -1
=1
/]
dy dp



Linear Dependence

 Definition 1:
A set of vectors {d,d,,, -, dy} € RN are linearly dependent if
3{&1,“2,“‘,“1\/1} = R,SUCh that: .
a; = Zajaj 1<, j <M
JFl

l

a;inthe spanof all a@’s

For example: if a, = 3a, — 2ds + 6a,



Linear Dependence

Are these linearly dependent?

LIELEN

-~

Need to solve:
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