

EECS 16A

Proofs, Span, Linear Dependence

Last time: Vector-Vector Multiplication

Also known as "inner product" or "dot product"

Like this....

and like that!

Last time: Vector-Vector Multiplication

Like this....

and like that!

$$\begin{bmatrix}
 2 & 1 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 1
 \end{bmatrix}
 = 2 \cdot 1 + 1 \cdot 0 + 0 \cdot S + 1 \cdot 4 = 6
 \end{bmatrix}
 = 4 \times 1$$

Last time: Matrix-Matrix multiply

and like that!

Some practice

$$\begin{bmatrix} 5 & 2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$
Lirear system:
$$\begin{bmatrix} 5x + 2y \\ x + 4y \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \leftarrow 5x + 2y = 1$$

$$x + 4y = 5$$

Like this....

and like that!

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 \cdot 0 + 2 \cdot 1 + 3 \cdot 0 \\ 4 \cdot 0 + 5 \cdot 1 + 0 \cdot 6 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 5 & 9 \end{bmatrix}$$

Systems of equations $A\vec{x} = b$

$$A\vec{x} = \vec{b}$$

Last time: Row view

Rows represent how much the variables affect a particular measurement.

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$\xrightarrow{\begin{array}{c} a_{11} \chi_1 + \alpha_{12} \chi_2 + \dots + \alpha_{1n} \chi_n = b_1 \\ \alpha_{21} \chi_1 + \alpha_{22} \chi_2 + \dots + \alpha_{2n} \chi_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{m1} \chi_1 + \alpha_{m2} \chi_1 + \dots + \alpha_{mn} \chi_n = b_m \\ \xrightarrow{\begin{array}{c} a_{m1} \chi_1 + \alpha_{m2} \chi_1 + \dots + \alpha_{mn} \chi_n = b_m \\ \end{array}}$$

$$\xrightarrow{m \times n} \qquad n \times 1 \qquad m \times 1$$

Last time: Column view

Columns represent how much a particular variable affects all measurements.

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$m \times n \qquad n \times 1 \qquad m \times 1$$

$$x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_n \vec{a}_n = \vec{b}$$

Linear Combination of vectors weighted by the unknowns!

Row vs Column Perspective

• Column Perspective of Ax = b

$$\begin{bmatrix} a_{11} \\ a_{21} \\ a_{22} \\ a_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$\begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \\ \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \vec{a}_1 x_1 + \vec{a}_2 x_2 + \vec{a}_3 x_3$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \vec{a}_1 x_1 + \vec{a}_2 x_2 + \vec{a}_3 x_3$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \vec{a}_1 x_1 + \vec{a}_2 x_2 + \vec{a}_3 x_3$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \vec{a}_1 x_1 + \vec{a}_2 x_2 + \vec{a}_3 x_3$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \vec{a}_1 x_1 + \vec{a}_2 x_2 + \vec{a}_3 x_3$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \vec{a}_1 x_1 + \vec{a}_2 x_2 + \vec{a}_3 x_3$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \vec{a}_1 x_1 + \vec{a}_2 x_2 + \vec{a}_3 x_3$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \vec{a}_1 x_1 + \vec{a}_2 x_2 + \vec{a}_3 x_3$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \vec{a}_1 x_1 + \vec{a}_2 x_2 + \vec{a}_3 x_3$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \vec{a}_1 x_1 + \vec{a}_2 x_2 + \vec{a}_3 x_3$$

What if
$$\vec{a}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \vec{a}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \vec{a}_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Linear combination of vectors

- Given set of vectors $\{a_1,a_2,\cdots,a_M\}\in\mathbb{R}^N$, and coefficients $\{\alpha_1,\alpha_2,\cdots,\alpha_M\}\in\mathbb{R}$
- A linear combination of vectors is defined as: $b \triangleq \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_M a_M$

$$=x_1\vec{a}_1+x_2\vec{a}_2+x_3\vec{a}_3$$

Matrix-vector multiplication is a linear combination of the columns of A!

Linear combinations of vectors to play bumper cars

• Consider the problem: $A\vec{x} = \vec{b}$:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\vec{a}_1 \quad \vec{a}_2 \qquad \vec{b}$$

What linear combination of \vec{a}_1 , \vec{a}_2 will give \vec{b} ?

$$2a_1 + 1a_2$$

Gaussian Elimination:
$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 3 \\ 0 & -2 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \end{bmatrix}$$

• Consider the problem: $A\vec{x} = \vec{b}$:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\vec{a}_1 \quad \vec{a}_2 \qquad \vec{b}$$

Can I find a linear combination of \vec{a}_1 , \vec{a}_2 that will give \underline{any} \vec{b} ?

• Consider the problem: $A\vec{x} = \vec{b}$:

$$\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\vec{a}_1 \quad \vec{a}_2 \qquad \vec{b}$$

Can I find a linear combination of \vec{a}_1 , \vec{a}_2 that will give any \vec{b} ?

On no I'm stuck on a line!

• Consider the problem: $A\vec{x} = \vec{b}$:

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\vec{a}_1 \quad \vec{a}_2 \qquad \vec{b}$$

Can I find a linear combination of \vec{a}_1 , \vec{a}_2 that will give <u>any</u> \vec{b} ?

Yes now I can!

Span Column Space / Range

Jargon ALERT!1

Span of the columns of A is the set of all vectors \vec{b} such that $A\vec{x} = \vec{b}$ has a solution (doesn't need to be unique)

- the set of all vectors that can be reached by all possible linear combinations of the columns of A

Example: What is the span of the cols of A?

$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbb{R}^2! \\ \text{entire 2D} \\ \text{plane!} \end{bmatrix}$$

$$\mathbb{R}^2!$$
 entire 2D plane!

Mathy notation: such that
$$\mathrm{span}(\mathrm{cols}\ \mathrm{of}\ A) = \left\{ \vec{v} \middle| \ \vec{v} = \alpha \left[\begin{array}{c} 1 \\ 1 \end{array}\right] + \beta \left[\begin{array}{c} 1 \\ -1 \end{array}\right] \qquad \alpha,\beta \in \mathbb{R} \right\}$$

$$\alpha, \beta \in \mathbb{R}$$

Span / Column Space / Range

Span of the columns of A is the set of all vectors \vec{b} such that $A\vec{x}=\vec{b}$ has a solution

- the set of all vectors that can be reached by all possible linear combinations of the columns of A

Example: What is the span of the cols of A?

$$A = \left[\begin{array}{cc} 1 & -1 \\ 1 & -1 \end{array} \right]$$

The line
$$x_1 = x_2$$

$$\operatorname{span}(\operatorname{cols} \operatorname{of} A) = \left\{ \vec{v} \middle| \ \vec{v} = \alpha \left[\begin{array}{c} 1 \\ 1 \end{array} \right], \qquad \alpha \in \mathbb{R} \right\}$$

Span / Column Space / Range

• Definition:

If
$$\exists \vec{x} \text{ s.t. } A\vec{x} = \vec{b} \text{ then } \vec{b} \in \text{span}\{\text{cols}(A)\}$$

Q: What if $\vec{b} \notin \text{span}\{\text{cols}(A)\}$?

A: There is no solution for $A\vec{x} = \vec{b}$

Examples

what is the span of:
$$\vec{\chi}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\vec{\chi}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{\chi}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$?

basis vectors

What is the span of \vec{o} ? \vec{o} It's the one vector you can alway reach

• What are the values of a, b, c such that the Span{Cols of A) = \mathbb{R}^3

Responses

$$A = \begin{bmatrix} 1 & 1 & a \\ -1 & 1 & b \\ 0 & 0 & c \end{bmatrix}$$

- \bigcirc a \neq 0, b=1, c = 1
- \bigcirc a = 0, b\neq 1, c = 1
- \bigcirc a = 0, b=1, c = 1
- \bigcirc a \neq 0, b \neq 0, c \neq 0
- All of the above

Steps for a proof

- Write out the statement, note direction ("if" → "then")
- Try a simple example (to see a pattern)
 - Use what is known, definitions and other theorems
- Manipulate both sides of the arguments
 - Must justify each step
- Know the different styles of proofs to try
 - Constructive
 - Proof by contradiction

step two."

Example proof: operations for solving a linear equation

- Prove the basic operations don't change a solution:
 - 1. Multiply an equation with *nonzero* scalar

$$2x + 3y = 4$$
 has the same solution as: $4x + 6y = 8$

Proof for N=2:

Let
$$ax + by = c$$
, with solution x_0, y_0
 $\Rightarrow ax_0 + by_0 = c$

Show that $\beta ax + \beta by = \beta c$, has the same solution.

Substitute x_0 , y_0 for x, y:

$$\beta ax_0 + \beta by_0 = \beta c$$

$$\beta (ax_0 + by_0) = \beta c$$

$$\beta c = \beta c \text{ But is it the only solution?}$$

$$\beta ax + \beta by = \beta c$$
, with solution: x_1, y_1
 $\Rightarrow \beta ax_1 + \beta by_1 = \beta c$

Show that ax + by = c, has the same solution....

Since
$$\beta \neq 0...$$

$$\beta ax_1 + \beta by_1 = \beta c \Rightarrow ax_1 + by_1 = c$$

SOLUTION OF ONE, IMPLIES THE OTHER AND VICE-VERSA!

Proof: Span

Proof: Span

Theorem:
$$\operatorname{span}\left\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}1\\-1\end{bmatrix}\right\} = \mathbb{R}^2 \leftarrow \operatorname{Prove that}^{\vee} A^{=}\begin{bmatrix}1\\1\end{bmatrix}$$
 spans entire 2 bspace

$$\operatorname{span}\left\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}1\\-1\end{bmatrix}\right\} \Rightarrow \left\{\overrightarrow{v} \middle| \overrightarrow{v} = \alpha \begin{bmatrix}1\\1\end{bmatrix} + \beta \begin{bmatrix}1\\-1\end{bmatrix} \quad , \alpha,\beta \in \mathbb{R}\right\} = \mathbb{S} \qquad \operatorname{span}\left\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}1\\-1\end{bmatrix}\right\} = \mathbb{R}^2$$

set of all vectors that can be written as lin. combos. of [i] and [i]

Concept: pick some specific,
$$\overrightarrow{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \in \mathbb{R}^2$$
 and show that it belongs to \mathbb{S} parametric (leave as variables)

$$\alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \quad \text{form} \Rightarrow \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \quad \text{Now can solve}$$

$$\text{The properties of the propertie$$

write what you want to show

$$\operatorname{span}\left\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}1\\-1\end{bmatrix}\right\} = \mathbb{R}^2$$

Proof: Span

Need to solve:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
Matrix - Vector form

Gaussian Elimination:

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & -1 & b_2 \end{bmatrix}$$

$$R2-R1 \begin{bmatrix} 0 & -2 & b_2-b_1 \\ 0 & 1 & b_2-b_1 \end{bmatrix}$$

Backsubstitution:

$$\alpha = \frac{b_1 + b_2}{2}$$
Gives a solin
$$\beta = \frac{b_1 - b_2}{2}$$
Values of $\alpha_1\beta$

: Every b ER2 can be written as linear combos, so bes

Proved! "constructive proof" since we found an explicit formula for a, B

Linear Dependence

Recall:

$$A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$\vec{a}_1 \quad \vec{a}_2$$

 \vec{a}_1 and \vec{a}_2 are linearly dependent

$$\vec{a}_1 = -\vec{a}_2$$

Linear Dependence

Definition 1:

A set of vectors $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_M\} \in \mathcal{R}^N$ are linearly dependent if $\exists \{\alpha_1, \alpha_2, \dots, \alpha_M\} \in \mathbb{R}$, such that:

For example: if $\vec{a}_2 = 3\vec{a}_1 - 2\vec{a}_5 + 6\vec{a}_7$

$$\overrightarrow{a}_i = \sum_{j \neq i} \alpha_j \overrightarrow{a}_j \qquad 1 \leq i, j \leq M$$

$$\downarrow \qquad \qquad \downarrow$$

$$\overrightarrow{a}_i \text{ in the span of all } \overrightarrow{a}_i \text{s}$$

Linear Dependence

Are these linearly dependent?

Need to solve: