$$\begin{bmatrix} \cos 90^\circ & \sin 90^\circ \\ -\sin 90^\circ & \cos 90^\circ \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \underbrace{32}_{22} \underbrace{92}_{22} \underbrace{92}_{22$$

EECS 16A Matrix Transformations

Last time: Linear combination of vectors

• Given set of vectors $\{\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_M\} \in \mathbb{R}^N$,and coefficients $\{\alpha_1, \alpha_2, \cdots, \alpha_M\} \in \mathbb{R}$

• A linear combination of vectors is defined as: $\vec{b} \triangleq \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_M \vec{a}_M$ scale and ¹ defined as

Example:

$$= x_1 ec{a}_1 + x_2 ec{a}_2 + x_3 ec{a}_3$$

Matrix-vector multiplication is a linear combination of the columns of A!

Example: write as a linear combination of kinds of feet

Last time: Span / Column Space / Range

Span of the columns of A: the set of all vectors \vec{b} s.t. $A\vec{x} = \vec{b}$ has a solution

- the set of all vectors that can be reached by all possible linear combinations of the columns of A

Example: span of the cols of A is \mathbb{R}^2 !

Last time: Solutions to Ax=b are in the span of cols(A)

Definition 1:

A set of vectors $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_M\} \in \mathcal{R}^N$ are linearly dependent if $\exists \{\alpha_1, \alpha_2, \dots, \alpha_M\} \in \mathbb{R}$, such that: $\vec{a}_i = \sum_{j \neq i} \alpha_j \vec{a}_j$ $1 \leq i, j \leq M$ C mere coeffs. $j \neq i$ one vector is lin. combo. of others

Definition 2: A set of vectors $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_M\} \in \mathcal{R}^N$ are linearly dependent if $\exists \{\alpha_1, \alpha_2, \dots, \alpha_M\} \in \mathbb{R}$, such that: $\sum_{i=1}^M \alpha_i \vec{a}_i = 0$ As long as not all $\alpha_i = 0$

Definition:

A set of vectors are linearly independent if they are not dependent

Definition 1:

A set of vectors $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_M\} \in \mathcal{R}^N$ are linearly dependent if $\exists \{\alpha_1, \alpha_2, \dots, \alpha_M\} \in \mathbb{R}$, such that: $\vec{a}_i = \sum_{j \neq i} \alpha_j \vec{a}_j$ $1 \le i, j \le M$

Definition 1:

A set of vectors $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_M\} \in \mathcal{R}^N$ are linearly dependent if $\exists \{\alpha_1, \alpha_2, \dots, \alpha_M\} \in \mathbb{R}$, such that: $\vec{a}_i = \sum_{j \neq i} \alpha_j \vec{a}_j$ $1 \le i, j \le M$

Definition 1: A set of vectors $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_M\} \in \mathcal{R}^N$ are linearly dependent if $\exists \{\alpha_1, \alpha_2, \dots, \alpha_M\} \in \mathbb{R}$, such that: $\vec{a}_i = \sum_{j \neq i} \alpha_j \vec{a}_j \quad 1 \leq i, j \leq M$

 $\begin{array}{l} \underline{\text{Definition 2}}:\\ \text{A set of vectors } \{\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_M\} \in \mathcal{R}^N \text{ are linearly dependent if}\\ \exists \{\alpha_1, \alpha_2, \cdots, \alpha_M\} \in \mathbb{R} \text{ ,such that:} \quad \sum_{i=1}^M \alpha_i \vec{a}_i = \vec{0} \quad \text{ As long as not all } \alpha_i = 0 \end{array}$

<u>**Definition**</u>: A set of vectors are linearly independent if they are not dependent

Definition 2:

A set of vectors $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_M\} \in \mathcal{R}^N$ are linearly dependent if $\exists \{\alpha_1, \alpha_2, \dots, \alpha_M\} \in \mathbb{R}$, such that: $\sum_{i=1}^{M} \alpha_i \vec{a}_i = \vec{0}$ As long as not all $\alpha_i = 0$

Definition 1: A set of vectors $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_M\} \in \mathcal{R}^N$ are linearly dependent if $\exists \{\alpha_1, \alpha_2, \dots, \alpha_M\} \in \mathbb{R}$, such that: $\vec{a}_i = \sum_{j \neq i} \alpha_j \vec{a}_j \quad 1 \leq i, j \leq M$

Definition 2: A set of vectors $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_M\} \in \mathcal{R}^N$ are linearly dependent if $\exists \{\alpha_1, \alpha_2, \dots, \alpha_M\} \in \mathbb{R}$, such that: $\sum_{i=1}^M \alpha_i \vec{a}_i = 0$ As long as not all $\alpha_i = 0$

Definition:

A set of vectors are linearly <u>in</u>dependent if they are not dependent

Examples

linearly independent!

cols
$$\begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 2 \end{bmatrix}$$
 linearly independent
span \mathbb{R}^2 does this get to anywhere in \mathbb{R}^3 ? yes
 $\alpha_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \\ 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 5 \\ 2 \end{bmatrix} \rightarrow 0 \neq 2$
No sol'n.

Prove it!

Theorem: if the columns of the matrix A are linearly dependent, then $A\vec{x} = \vec{b}$ does <u>not</u> have a unique solution

> PROOF Consider the counter-example $\mathbb{S} \triangleq \{0, \bullet\}, \tau \triangleq \{\langle \bullet, \bullet \rangle, \langle \bullet, 0 \rangle, \langle 0, 0 \rangle\}$ so that $\mathcal{M}_{\tau} = \{\langle i, \lambda \ell \cdot \bullet \rangle, \langle j, \lambda \ell \cdot 0 \rangle, \langle k, \lambda \ell \cdot (\ell < m ? \bullet \iota 0) \rangle\}$. We let $\mathcal{X} \triangleq \{\langle i, \sigma \rangle \mid \forall j < i : \sigma_j = \bullet\}$ so that $\neg FD(\mathcal{X})$. We have $\mathcal{M}_{\tau \downarrow \bullet} = \{\langle i, \lambda \ell \cdot \bullet \rangle, \langle k, \lambda \ell \cdot (\ell < m ? \bullet \iota 0) \rangle \mid k < m\}$ and $\oplus \{\mathcal{X}\} = \{\langle i, \sigma \rangle \mid \forall j \leq i : \sigma_j = \bullet\}$. We have $\alpha_{\mathcal{M}_{\tau}}'(\oplus \{\mathcal{X}\}) = \{s \mid \mathcal{M}_{\tau \downarrow s} \subseteq \oplus \{\mathcal{X}\}\} = \{\bullet\}$ whereas $\widetilde{pre}[\tau](\alpha_{\mathcal{M}_{\tau}}'(\mathcal{X})) = \widetilde{pre}[\tau](\{s \mid \mathcal{M}_{\tau \downarrow s} \subseteq \mathcal{X}\}) = \widetilde{pre}[\tau](\{\bullet\})$ = $\{s \mid \forall s' : t(s, s') \Rightarrow s' = \bullet\} = \emptyset$ since $t(s, \bullet)$ implies $s = \bullet$ and $t(\bullet, O)$ holds.

Prove it!

Theorem: if the columns of the matrix A are linearly dependent, then $A\vec{x} = \vec{b}$ does <u>not</u> have a unique solution

Let's prove for a 3x3 A mtx:
What we know:
Cols are lin. dep.
$$A = \begin{bmatrix} \vec{a}, \vec{a}_2, \vec{a}_3 \end{bmatrix}$$

Concept: Pick some sol'n, x^* , and show that there's another one
Since \vec{x}^* is a sol'n, then $A\vec{x}^* = \vec{b}$
From lin. indep. def'n #2:
 $\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \alpha_3 \vec{a}_3 = \vec{O} \rightarrow \begin{bmatrix} \vec{a}, \vec{a}_2, \vec{a}_3 \end{bmatrix} \begin{bmatrix} \alpha'_1 \\ \alpha'_2 \\ \alpha'_3 \end{bmatrix} = \vec{O} \rightarrow A\vec{\alpha} = \vec{O}$
Now try $\vec{z}^* = \vec{x}^* + \vec{\alpha}$
 $A\vec{z}^2 = A(\vec{x}^* + \vec{\alpha}) = A\vec{x}^* + A\vec{\alpha} = \vec{b} + \vec{O} = \vec{b}$
 $A\vec{x}^2 = \vec{b}$, so \vec{x}^* is also a sol'n!

Prove it!

Theorem: if the columns of the matrix A are linearly dependent, then $A\vec{x} = \vec{b}$ does <u>not</u> have a unique solution

Proof for $A \in \mathbb{R}^{3 \times 3}$

know: columns are linearly dependent show: more than 1 solution Concept: pick some specific solution \vec{x}^* , and show that there's another one Let: $A\vec{x}^* = \vec{b}$ and $A = [\vec{a}_1 \ \vec{a}_2 \ \vec{a}_3]$

From linear dependence Def 2:

Pop Quiz

Responses

After doing Gaussian Elimination on a system of linear equations $A\vec{x}=\vec{b}$, the augmented matrix looks like below. Choose the most accurate statement:

1	*	0	0	5]
0	0	0	0	4
0	0	1	0	3
0	0	0	1	4 3 2

- Ax=b has no solution
- Ax=0 has infinite solutions
- The columns of A are linearly dependent
- All of the above

Matrix Transformations

$$\begin{bmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ -\sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & 90^{\circ} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{2} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \alpha_{2} \\ 32^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{2} \\ \alpha_{2} \end{bmatrix} \begin{bmatrix} \alpha_{2} \\$$

Matrices are operators that transform vectors

Matrices are operators that transform vectors

How would I design a matrix to reflect about x_2 axis?

https://www.youtube.com/watch?v=LhF_56SxrGk

How would I design a matrix to reflect about x₂ axis?

Matrices are operators that transform vectors

Example:
$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \cos(\theta)x_1 - \sin(\theta)x_2 \\ \sin(\theta)x_1 + \cos(\theta)x_2 \end{bmatrix} \overset{\text{What }}{\underset{\text{does it }}{\underset{\text{does }}{}}{\underset{\text{does }}{\atop{\text{does }}{\underset{\text{does }}{\underset{\text{does }}{\atop{\text{does }}{\underset{\text{does }}{\atop{\text{does }}{\underset{\text{does }}{\underset{\text{does }}{\atop{\text{does }}}{\underset{\text{does }}{\atop{\text{does }}{\underset{\text{does }}{\atop{\text{does }}}}}}}}}}}}}}}}}}}}$$

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$$

Rotation Matrix!

What if I rotate twice?

What's the matrix transform?

Linear Transformation of vectors

f: is a linear transformation if:

 $f(\alpha \vec{x}) = \alpha f(\vec{x}) \qquad \alpha \in \mathbb{R}$ $f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$

Claim: Matrix-vector multiplications satisfy linear transformation

 $A \cdot (\alpha \vec{x}) = \alpha A \vec{x}$ $A \cdot (\vec{x} + \vec{y}) = A \vec{x} + A \vec{y}$

Proof via explicitly writing the elements