$$
\left[\begin{array}{cc}
\cos 90^{\circ} & \sin 90^{\circ} \\
-\sin 90^{\circ} & \cos 90^{\circ}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=0
$$

EECS 16A

Matrix Transformations

Last time: Linear combination of vectors

- Given set of vectors $\left\{\vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{M}\right\} \in \mathbb{R}^{N}$, and coefficients $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{M}\right\} \in \mathbb{R}$
- A linear combination of vectors is defined as: $\left.\vec{b} \triangleq \alpha_{1} \vec{a}_{1}+\alpha_{2} \vec{a}_{2}+\cdots+\alpha_{M} \vec{a}_{M}\right\}$ scale and ${ }^{\tau}$ defined as add the vectors

Example:

$$
\begin{aligned}
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{lll}
\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& =x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+x_{3} \vec{a}_{3}
\end{aligned}
$$

Example: write as a linear combination of kinds of feet

e : \# eyes
b: \# beaks
f : \# of feet

$$
\left.\begin{array}{l}
f=2 c+4 s+4 w \\
b=1 c \\
e=2 c+2 s+2 w
\end{array}\right\}\left[\begin{array}{l}
f \\
b \\
e
\end{array}\right]=\left[\begin{array}{lll}
2 & 4 & 4 \\
1 & 0 & 0 \\
2 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
c \\
s \\
w
\end{array}\right]
$$

c: chicken
S: sheep
w: wolf
Is there unique sol'n?
No! col $2 \pi 3$ same \rightarrow Lin. Dep!!
I cannot tell sheep
from wolf! ©

Last time: Span / Column Space / Range

Span of the columns of A : the set of all vectors \vec{b} s.t. $A \vec{x}=\vec{b}$ has a solution

- the set of all vectors that can be reached by all possible linear combinations of the columns of A

Example: span of the cols of A is \mathbb{R}^{2} !

$$
A=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

$\operatorname{span}(\operatorname{cols}$ of $A)=\left\{\vec{v} \left\lvert\, \vec{v}=\alpha\left[\begin{array}{l}1 \\ 1\end{array}\right]+\beta\left[\begin{array}{r}1 \\ -1\end{array}\right] \quad \alpha\right., \beta \in \mathbb{R}\right\}$

Last time: Solutions to $\mathrm{Ax}=\mathrm{b}$ are in the span of cols(A)

Linear Dependence

Definition 1:

A set of vectors $\left\{\vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{M}\right\} \in \mathcal{R}^{N}$ are linearly dependent if $\left.\underset{\substack{\tau_{\text {there }}^{\text {exists coeffs. }}}}{\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{M}\right.}\right\} \in \mathbb{R}$, such that: $\vec{a}_{i}=\sum_{j \neq i} \alpha_{j} \vec{a}_{j} \quad 1 \leq i, j \leq M$

Definition 2:
A set of vectors $\left\{\vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{M}\right\} \in \mathcal{R}^{N}$ are linearly dependent if $\exists\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{M}\right\} \in \mathbb{R}$, such that:

Definition:

A set of vectors are linearly independent if they are not dependent

Linear Dependence

Definition 1:

A set of vectors $\left\{\vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{M}\right\} \in \mathcal{R}^{N}$ are linearly dependent if $\exists\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{M}\right\} \in \mathbb{R}$,such that: $\vec{a}_{i}=\sum_{j \neq i} \alpha_{j} \vec{a}_{j} \quad 1 \leq i, j \leq M$

$$
A=\left[\begin{array}{ccc}
1 & 2 & -3 \\
1 & -2 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\alpha_{1}\left[\begin{array}{c}
2 \\
-2
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
-3 \\
1
\end{array}\right]
$$

Linear Dependence

Definition 1:

A set of vectors $\left\{\vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{M}\right\} \in \mathcal{R}^{N}$ are linearly dependent if $\exists\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{M}\right\} \in \mathbb{R}$,such that: $\vec{a}_{i}=\sum_{j \neq i} \alpha_{j} \vec{a}_{j} \quad 1 \leq i, j \leq M$

$$
A=\left[\begin{array}{ccc}
1 & 2 & -3 \\
1 & -2 & 1
\end{array}\right]
$$

check:

$$
\begin{aligned}
& -\vec{a}_{2}-\vec{a}_{3}=\vec{a}_{1}
\end{aligned}
$$

Linear Dependence

Definition 1:

A set of vectors $\left\{\vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{M}\right\} \in \mathcal{R}^{N}$ are linearly dependent if
$\exists\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{M}\right\} \in \mathbb{R}$, such that:

Definition 2:

A set of vectors $\left\{\vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{M}\right\} \in \mathcal{R}^{N}$ are linearly dependent if $\exists\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{M}\right\} \in \mathbb{R}$,such that:

$$
\sum_{i=1}^{M} \alpha_{i} \vec{a}_{i}=\overrightarrow{0} \quad \text { As long as not all } \alpha_{i}=0
$$

Definition:

A set of vectors are linearly independent if they are not dependent

Linear Dependence

Definition 2:

A set of vectors $\left\{\vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{M}\right\} \in \mathcal{R}^{N}$ are linearly dependent if $\exists\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{M}\right\} \in \mathbb{R}$,such that:

$$
\sum_{i=1}^{M} \alpha_{i} \vec{a}_{i}=\overrightarrow{0} \quad \text { As long as not all } \alpha_{i}=0
$$

$$
\begin{array}{r}
A=\left[\begin{array}{l}
1 \\
1
\end{array}\right)\binom{2}{-2}\left(\begin{array}{c}
-3 \\
1
\end{array}\right] \\
\vec{a}_{1}=-\vec{a}_{2}-\vec{a}_{3} \\
\vec{a}_{1}+\vec{a}_{2}+\vec{a}_{3}=\overrightarrow{0}
\end{array}
$$

Linear Dependence

Definition 1:

A set of vectors $\left\{\vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{M}\right\} \in \mathcal{R}^{N}$ are linearly dependent if
$\exists\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{M}\right\} \in \mathbb{R}$, such that: $\vec{a}_{i}=\sum \alpha_{j} \vec{a}_{j} \quad 1 \leq i, j \leq M$

Definition 2:

A set of vectors $\left\{\vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{M}\right\} \in \mathcal{R}^{N}$ are linearly dependent if $\exists\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{M}\right\} \in \mathbb{R}$, such that:

Definition:

A set of vectors are linearly independent if they are not dependent

Examples

$$
\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\} \rightarrow \operatorname{span} \mathbb{R}^{2}
$$

linearly independent!

3 vectors in 2D space:

$\operatorname{cols}(\underbrace{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 2\end{array}\right]})$ span \mathbb{R}^{2} does this get to anywhere in \mathbb{R}^{3} ? yes $\alpha_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+\alpha_{2}\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 5 \\ 2\end{array}\right] \rightarrow\left[\begin{array}{ll|l}1 & 0 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 2\end{array}\right] \rightarrow \underset{\text { No Sol 'n! }}{ }+$

Prove it!

Theorem: if the columns of the matrix A are linearly dependent, then $\mathrm{A} \overrightarrow{\mathrm{x}}=\vec{b}$ does not have a unique solution

$$
\begin{aligned}
& \text { Proof Consider the counter-example } \mathbf{S} \triangleq\{0, \bullet\}, \tau \triangleq \\
& \{(\bullet, \bullet\rangle,\langle\bullet, 0\rangle,\langle 0,0)\} \text { so that } \mathcal{M}_{\tau}=\{(i, \lambda \ell \cdot \bullet\rangle,\langle j, \lambda \ell \cdot 0) \text {, } \\
& \langle k, \lambda \ell \cdot(\ell<m ? \bullet i 0)\rangle\} \text {. We let } x \triangleq\{\langle i, \sigma\rangle \mid \forall j<i \text { : } \\
& \left.\sigma_{j}=\bullet\right\} \text { so that } \neg F D(X) \text {. We have } \mathcal{M}_{\tau!\bullet}=\{(i, \lambda \ell \cdot \bullet) \text {, } \\
& (k, \lambda \ell \cdot(\ell<m ? \bullet i 0)) \mid k<m), \mathcal{M}_{r l 0}=(\langle j, \lambda \ell \cdot 0) \text {, } \\
& (k, \lambda \ell \cdot(\ell<m ? \bullet i 0)) \mid k \geq m\} \text { and } \oplus|X|=\{(i, \sigma) \mid \forall j \leq \\
& \left.i: \sigma_{j}=\bullet\right\} \text {. We have } \alpha_{\mathcal{M}_{\mathrm{r}}}^{\gamma}(\oplus|X|)=\left\{s \mid \mathcal{M}_{\tau \downarrow s} \subseteq \oplus(X \mid\}=\{\bullet\}\right. \\
& \text { whereas } \left.\widetilde{p r e}[\tau]\left(\alpha_{\mathcal{M}_{\mathrm{T}}}^{\vee}(X)\right)=\widetilde{\operatorname{pre}}[\tau]\left(\left(s \mid \mathcal{M}_{\tau} \downarrow s \subseteq X\right]\right)=\widetilde{\operatorname{pre}}[\tau](\mid \bullet\}\right) \\
& =\left\{s \mid \vee_{s}^{\prime}: t\left(s, s^{\prime}\right) \Rightarrow s^{\prime}=\bullet\right\}=\emptyset \text { since } t(s, \bullet) \text { implies } s=\bullet \text { and } \\
& t(\bullet, O) \text { holds. }
\end{aligned}
$$

Prove it!
Theorem: if the columns of the matrix A are linearly dependent, then $\mathrm{A} \overrightarrow{\mathrm{x}}=\vec{b}$ does not have a unique solution
Let's prove for a 3×3 A mfr:
What we know:
Want to show: more than one sol'n
cols are lin. dep. $A=\left[\begin{array}{lll}\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3}\end{array}\right]$
concept: Pick some sol'n, x^{*}, and show that there's another one since \vec{x}^{*} is a sol' n, then $A \vec{x}^{*}=\vec{b}$
$\vec{\alpha}$ (not all zeros)
From lin. indep. deft $\# 2$:

$$
\begin{aligned}
& \text { From lin. indep. deft } \# 2: \\
& \alpha_{1} \vec{a}_{1}+\alpha_{2} \vec{a}_{2}+\alpha_{3} \vec{a}_{3}=\overrightarrow{0} \rightarrow\left[\begin{array}{lll}
\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\overrightarrow{0} \rightarrow A \vec{\alpha}=\overrightarrow{0} \\
& \text { Anything }
\end{aligned}
$$

Anything in direction $\vec{\alpha}$ is
Now try $\vec{x}^{2}=\vec{x}^{*}+\vec{\alpha}$

$$
\begin{gathered}
\text { Now try } \vec{x}^{2}=\vec{x}^{*}+\vec{\alpha} \\
A \vec{x}^{\prime}=A\left(\vec{x}^{*}+\vec{\alpha}\right) \underbrace{}_{\text {because linear }} A \vec{x}^{*}+\underline{A \vec{\alpha}}=\vec{b}+\overrightarrow{\underline{0}}=\vec{b}
\end{gathered}
$$

"invisible" to this mex (null space)
$\uparrow A \vec{x}^{\prime}=\vec{b}$, so \vec{x}^{2} is also a sol'n!

Prove it!

Theorem: if the columns of the matrix A are linearly dependent, then $\mathrm{A} \overrightarrow{\mathrm{x}}=\vec{b}$ does not have a unique solution
Proof for $A \in \mathbb{R}^{3 \times 3}$
know: columns are linearly dependent
show: more than 1 solution
Concept: pick some specific solution \vec{x}^{*}, and show that there's another one Let: $A \vec{x}^{*}=\vec{b}$ and $A=\left[\begin{array}{lll}\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3}\end{array}\right]$

$$
\begin{aligned}
& \text { From linear dependence Def 2: } \\
& \alpha_{1} \vec{a}_{1}+\alpha_{2} \vec{a}_{2}+\alpha_{3} \vec{a}_{3}=\overrightarrow{0} \longrightarrow\left[\begin{array}{lll}
\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \overrightarrow{a_{3}}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=0 \quad \vec{\alpha} \\
& \text { Set } \vec{x}^{\dagger}=\vec{x}^{*}+\vec{\alpha} \\
& \Rightarrow A \vec{x}^{\dagger}=A\left(\vec{x}^{*}+\vec{\alpha}\right)=A \vec{x}^{*}+A \vec{\alpha}=\vec{b}+\overrightarrow{0} \quad \text { So } \vec{x}^{\dagger} \text { is another solution! }
\end{aligned}
$$

Pop Quiz

After doing Gaussian Elimination on a system of linear equations $A \vec{x}=\vec{b}$, the augmented matrix looks like below. Choose the most accurate statement:

Responses
$A x=b$ has no solution$A x=0$ has infinite solutionsThe columns of A are linearly dependentAll of the above

Matrix Transformations

$$
\left[\begin{array}{cc}
\cos 90^{\circ} & \sin 90^{\circ} \\
-\sin 90^{\circ} & \cos 90^{\circ}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=0
$$

Matrices are operators that transform vectors

$$
A \vec{x}=\vec{b}
$$

Matrices are operators that transform vectors

$$
A \vec{x}=\vec{b}
$$

How would I design a matrix to reflect about x_{2} axis?

How would I design a matrix to reflect about x_{2} axis?
Reflection

$$
\begin{aligned}
& \text { want } \\
& {\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
-x_{1} \\
x_{2}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{array}{cc}
\text { Matrix! } \\
{\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
-x_{2}
\end{array}\right]}
\end{array}
$$

check
fry $\vec{x}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{r}
-3 \\
1
\end{array}\right]
$$

Matrices are operators that transform vectors

Example: $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}\cos (\theta) x_{1}-\sin (\theta) x_{2} \\ \sin (\theta) x_{1}+\cos (\theta) x_{2}\end{array}\right] \begin{aligned} & \text { What } \\ & \text { does it } \\ & \text { do? }\end{aligned}$

$$
\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]
$$

Rotation Matrix!

$$
\left[\begin{array}{c}
\cos x^{\circ} \sin 90^{\circ} \\
-\sin 80^{\circ} \cos 90^{\circ}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=0 \underline{0}
$$

But they're
different?!?

What if I rotate twice?

$$
\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]
$$

Rotation Matrix!

What's the matrix transform?

Linear Transformation of vectors

f : is a linear transformation if:

$$
\begin{aligned}
& f(\alpha \vec{x})=\alpha f(\vec{x}) \quad \alpha \in \mathbb{R} \\
& f(\vec{x}+\vec{y})=f(\vec{x})+f(\vec{y})
\end{aligned}
$$

Claim: Matrix-vector multiplications satisfy linear transformation

$$
\begin{gathered}
A \cdot(\alpha \vec{x})=\alpha A \vec{x} \\
A \cdot(\vec{x}+\vec{y})=A \vec{x}+A \vec{y}
\end{gathered}
$$

