

EECS 16A

Vector Spaces:
Null spaces and Columnspaces

Last time: Graph Representation

I have 3 reservoirs: A,B,C
and I want to keep track of how
much water is in each
When I turn on some pumps, water moves between the reservoirs.

Edges
Where the water moves and what fraction is represented by arrows.
Edge weights
"directed" graph because
arrows have a direction

Last time: Matrix inverses

$$
\mathbf{A} \vec{x}=\vec{b} \longrightarrow \vec{x}=\mathbf{A}^{-1} \vec{b}
$$

- We can use Gaussian Elimination (Gauss-Jordan method) to find the inverse of a square matrix
- Once we have the inverse, we can use it to solve system of equations

So matrix inverse is like division? Sort of, but matrix division doesn't technically exist

What if $A x=b$ has infinite solutions?
No way to predict x from b , so A is not invertible

The right tool can make all the difference

Calculating matrix inverses: Gauss-Jordan method
Pose as a linear set of equations. Solve with Gaussian Elimination

$$
\begin{array}{r}
\substack{\text { Augmented } \\
\text { mix form: }}
\end{array}\left[A \underset{\text { Glim. }}{\substack{\text { Gauss. }}}\left[I \mid A^{-1}\right] \begin{array}{l}
\text { what if } 6 . E . \\
\text { doesn't work? }
\end{array}\right] \begin{aligned}
& \text { There is no inverse! } \\
& \text { (or you made a mistake) }
\end{aligned}
$$

Inverse of a $\mathbf{2 x 2}$ matrix

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \begin{array}{l}
\text { 1.Flip } a \text { and } d \\
\text { 2.Negate } b \text { and } c \\
\text { 3.Divide by } a d-b c
\end{array} \\
& A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
\end{aligned}
$$

Can we always invert a function?

- Can we always invert a function $\ldots . . f^{-1}(f(\vec{x}))=\vec{x}$?
$-f(x)=x^{2} ?$
$-f(x)=a x$?
$-f(x)=A x ?$

Proof: Invertibility of Linear Transformations
Theorem: A is invertible, if and only if (iff) the columns of A are linearly independent. (unique sol' n)

1. If columns of A are lin. dep. then A^{-1} does not exist
2. If A^{-1} exists, then the cols. of A are linearly independent

What we know:
cols of A are lin. dep.

To Show:
A^{-1} does not exist

$$
\exists \vec{\alpha} \neq \overrightarrow{0} \text {, st. } \begin{aligned}
& A \vec{\alpha} \\
& =\overrightarrow{0} \\
& \text { some no nt }
\end{aligned}
$$

$$
\begin{aligned}
& A \vec{\alpha}=\overrightarrow{0} \\
& \text { some non-trivial combo of } \operatorname{cols}(A) \rightarrow \overrightarrow{0} \\
& A^{-1} \text { exists }
\end{aligned}
$$

Proof by contradiction: Assume A^{-1} exists

$$
\begin{aligned}
& \underbrace{A^{-1}=\vec{\sigma}}_{\pi=\vec{\alpha} A \vec{\alpha}=A^{-1} \overrightarrow{0}}
\end{aligned}
$$

I $\vec{\alpha}=\overrightarrow{0} \longrightarrow$ But $\vec{\alpha} \neq \overrightarrow{0}$! Hence A^{-1} does not exist!

Equivalent Statements

- Matrix A is invertible
- $A \vec{x}=\vec{b}$ has a unique solution
- A has linearly independent columns (A is full rank)
- A has a trivial nullspace
- The determinant of A is not zero

Today's Jargon 4

- Rank of a matrix A is the number of linearly independent columns
- Nullspace of a matrix A is the set of solutions to $A \vec{x}=\overrightarrow{0}$
- A vector space is a set of vectors connected by two operators $(+, x)$
- A vector subspace is a subset of vectors that have "nice properties"
- A basis for a vector space is a minimum set of vectors needed to represent all vectors in the space
- Dimension of a vector space is the number of basis vectors
- Column space is the span (range) of the columns of a matrix
- Row space is the span of the rows of a matrix

Vector Space

A vector space is a set of vectors and scalars $\left(\mathbb{V} \in \mathbb{R}^{N}, \mathbb{F} \in \mathbb{R}\right)$ and two operators $\dot{\sim}+$ that satisfy the following:
multiply

1) $\alpha \vec{x} \in \mathbb{V}$

Axioms of closure

Axioms of addition (+)

Axioms of scaling (•)
2) $\vec{x}+\vec{y} \in \mathbb{V}$
3) $\vec{x}+(\vec{y}+\vec{z})=(\vec{x}+\vec{y})+\vec{z} \quad$ (associativity)
4) $\vec{x}+\vec{y}=\vec{y}+\vec{x}$
5) $\exists \overrightarrow{0} \in \mathbb{V}$ s.t. $\vec{x}+\overrightarrow{0}=\vec{x}$
6) $\exists(-\vec{x}) \in \mathbb{V}$ s.t. $\vec{x}+(-\vec{x})=\overrightarrow{0}$ (additive inverse)
7) $\alpha(\vec{x}+\vec{y})=\alpha \vec{x}+\alpha \vec{y} \quad$ (distributivity)
8) $\alpha \cdot(\beta \vec{x})=(\alpha \beta) \cdot \vec{x}$
9) $(\alpha+\beta) \vec{x}=\alpha \vec{x}+\beta \vec{x}$
10) $1 \cdot \vec{x}=\vec{x}$

Pop Quiz: Is it a vector space? (including operations .and t)
The set of all 2×2 matrices
A vector space, is a set of vectors and scalars ($\mathbb{V} \in \mathbb{R}^{N}, \mathbb{F} \in \mathbb{R}$)
and two operators $\cdot,+$ that satisfy the following: $\quad \alpha\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}\alpha a & \alpha b \\ \alpha c & \alpha d\end{array}\right]$

$$
V\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathbb{R}^{2 \times 2} ?
$$

2) $\vec{x}+\vec{y} \in \mathbb{V}$
3) $\vec{x}+(\vec{y}+\vec{z})=(\vec{x}+\vec{y})+\vec{z} \longrightarrow\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]+\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a+c & b+f \\ c+g & d+r\end{array}\right]$ still in set \checkmark
4) $\vec{x}+\vec{y}=\vec{y}+\vec{x}$
5) $\exists \overrightarrow{0} \in \mathbb{V}$ s.t. $\vec{x}+\overrightarrow{0}=\vec{x}$

Mtx addition is associative
6) $\exists(-\vec{x}) \in \mathbb{V}$ s.t. $\vec{x}+(-\vec{x})=\overrightarrow{0}$
7) $\alpha(\vec{x}+\vec{y})=\alpha \vec{x}+\alpha \vec{y}$ Also commutative
8) $\alpha \cdot(\beta \vec{x})=(\alpha \beta) \cdot \vec{x} \checkmark$
9) $(\alpha+\beta) \vec{x}=\alpha \vec{x}+\beta \vec{x}$ $\longrightarrow\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
10) $1 \cdot \vec{x}=\vec{x}$ \qquad $(\alpha+\beta)\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\alpha\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]+\beta\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \vee$

YES!
it's a vector space

Pop Quiz: Is it a vector space? (including operations .and +)

A vector space, is a set of vectors and scalars ($\left.\mathbb{V} \in \mathbb{R}^{N}, \mathbb{F} \in \mathbb{R}\right)$ and two operators $\cdot,+$ that satisfy the following:

1) $\alpha \vec{x} \in \mathbb{V}$
2) $\vec{x}+\vec{y} \in \mathbb{V}$
3) $\vec{x}+(\vec{y}+\vec{z})=(\vec{x}+\vec{y})+\vec{z}$
4) $\vec{x}+\vec{y}=\vec{y}+\vec{x}$
5) $\exists \overrightarrow{0} \in \mathbb{V}$ s.t. $\vec{x}+\overrightarrow{0}=\vec{x}$
6) $\exists(-\vec{x}) \in \mathbb{V}$ s.t. $\vec{x}+(-\vec{x})=\overrightarrow{0}$
7) $\alpha(\vec{x}+\vec{y})=\alpha \vec{x}+\alpha \vec{y}$
8) $\alpha \cdot(\beta \vec{x})=(\alpha \beta) \cdot \vec{x}$
9) $(\alpha+\beta) \vec{x}=\alpha \vec{x}+\beta \vec{x}$
10) $1 \cdot \vec{x}=\vec{x}$

Responses

Is \mathbb{R}^{2} a vector space? Also $\mathbb{R}, \mathbb{R}^{3}, \mathbb{R}^{4} \ldots$
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbb{R}^{2 \times 2} ?$

0 ?

Subspaces

- A subspace \mathbb{U} consists of a subset of \mathbb{V} in vector space $(\mathbb{V}, \mathbb{F}, \underbrace{+})$
$\mathbb{U} \subset \mathbb{i _ { i s } \text { a subsetot }} \mathbb{\mathbb { V }}$ have 3 properties:

1. Contains $\overrightarrow{0}$, i.e., $\overrightarrow{0} \in \in_{\text {is an element of }}$
2. Closed under vector addition: $\vec{v}_{1}, \vec{v}_{2} \in \mathbb{U}, \Rightarrow \vec{v}_{1}+\vec{v}_{2} \in \mathbb{U}$

Q: Consider all vectors \vec{v} who's length < 1 . Is this a subspace?

A: not closed under addition, nor scalar multiplication

Subspaces

- A subspace \mathbb{U} consists of a subset of \mathbb{V} in vector space $(\mathbb{V}, \mathbb{F},+, \cdot)$
- $\mathbb{U} \subset \mathbb{V}$ and have 3 properties

1. Contains $\overrightarrow{0}$, i.e., $\overrightarrow{0} \in \mathbb{U}$
2. Closed under vector addition: $\vec{v}_{1}, \vec{v}_{2} \in \mathbb{U}, \Rightarrow \vec{v}_{1}+\vec{v}_{2} \in \mathbb{U}$
3. Closed under scalar multiplication: $\vec{v}_{1} \in \mathbb{U}, \alpha \in \mathbb{F}, \Rightarrow \alpha \vec{v} \in \mathbb{U}$

$$
\text { Q: Is } \operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} \text { a subspace? }
$$

Q: What about this?

A: $\overrightarrow{0} \notin \mathbb{U}$
No!

Subspaces

- A subspace \mathbb{U} consists of a subset of \mathbb{V} in vector space $(\mathbb{V}, \mathbb{F},+, \cdot)$
- $\mathbb{U} \subset \mathbb{V}$ and have 3 properties

1. Contains $\overrightarrow{0}$, i.e., $\overrightarrow{0} \in \mathbb{U}$
2. Closed under vector addition: $\vec{v}_{1}, \vec{v}_{2} \in \mathbb{U}, \Rightarrow \vec{v}_{1}+\vec{v}_{2} \in \mathbb{U}$
3. Closed under scalar multiplication: $\vec{v}_{1} \in \mathbb{U}, \alpha \in \mathbb{F}, \Rightarrow \alpha \vec{v} \in \mathbb{U}$

Q: What about each of these 2D planes in \mathbb{R}^{3}

Example: set of all upper triangular 2×2 matrices

$$
\mathbb{W}=\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right] \right\rvert\, a, b, d \in \mathbb{R}\right\}, \mathbb{V}=\mathbb{R}^{2 \times 2}
$$

Is \mathbb{W} a subspace of \mathbb{V} ?
© 1. Zero vector?
2. Closed under addition?
$\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ is in W W

Q 3. Closed under scalar multiplication? $\longrightarrow \alpha\left[\begin{array}{cc}a_{1} & b_{1} \\ 0 & d_{1}\end{array}\right]=\left[\begin{array}{cc}a_{1} & \alpha b_{1} \\ 0 & \alpha d_{1}\end{array}\right]$ still in $\mathbb{W}!\sqrt{ }$
YES upper fri. m tx is a subspace of R^{2+2}

BaSis \rightarrow the minimum set of vectors that spans a vector space

What is the most efficient representation of the vector space?

$$
\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{c}
0.5 \\
-0.7
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
e \\
\pi
\end{array}\right],\left[\begin{array}{l}
6 \\
4
\end{array}\right],\left[\begin{array}{l}
4 \\
6
\end{array}\right]\right\}
$$

can only span \mathbb{R}^{2},
so only need 2 lin. ind vectors
\rightarrow Pick any two!

BaSis \rightarrow the minimum set of vectors that spans a vector space

Definition: given \mathbb{V}, a set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{N}\right\}$ is a basis of the vector space, if it satisfies:

- $\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{N}\right\}$ are linearly independent
$\cdot \forall \vec{v} \in \mathbb{V}, \exists \alpha_{1}, \alpha_{2}, \cdots, \alpha_{N} \in \mathbb{R}$ such that $\vec{v}=\alpha_{1} \vec{v}_{1}+\alpha_{2} \vec{v}_{2}+\cdots+\alpha_{N} \vec{v}_{N}$

Examples: which are a basis for $\mathbb{V}=\mathbb{R}^{3}$?

Column Space

Definition: The range/span/column space of a set of vectors is the set of all possible linear combinations:

$$
\operatorname{span}\left\{\vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{M}\right\} \triangleq\left\{\sum_{m=1}^{M} \alpha_{m} \vec{a}_{m} \mid \alpha_{1}, \alpha_{2}, \cdots, \alpha_{M} \in \mathbb{R}\right\}
$$

Example:

$$
A=\left[\begin{array}{ll}
a & 0 \\
0 & b \\
0 & 0
\end{array}\right]
$$

$$
\vec{v}_{1}=A \vec{u}_{1}, \vec{v}_{2}=A \vec{u}_{2}
$$

Q: Are the columns of A a basis? \mathbb{X}
Q: Is the column space of A a subspace? ©

1. Zero vector?	$A \overrightarrow{0}=\overrightarrow{0}$
2. Closed under addition?	$\vec{v}_{1}+\vec{v}_{2}=A \vec{u}_{1}+A \vec{u}_{2}=A\left(\vec{u}_{1}+\vec{u}_{2}\right)$
3. Closed under scalar multiplication?	$\alpha \vec{v}_{1}=\alpha A \vec{u}_{1}=A\left(\alpha \vec{u}_{1}\right)$

Today's Jargon 4

- Rank of a matrix A is the number of linearly independent columns
- Nullspace of a matrix A is the set of solutions to $A \vec{x}=\overrightarrow{0}$
- A vector space is a set of vectors connected by two operators $(+, x)$
- A vector subspace is a subset of vectors that have "nice properties"
- A basis for a vector space is a minimum set of vectors needed to represent all vectors in the space
- Dimension of a vector space is the number of basis vectors
- Column space is the span (range) of the columns of a matrix
- Row space is the span of the rows of a matrix

Rank

USA Today University Ranking for Cal:

- \#1 in Computer Systems
- \#3 in Electrical/Electronic/Communications
- \#3 in Computer Engineering

Rank

- $A \in \mathbb{R}^{N \times M}, \operatorname{Rank}\{A\}=\operatorname{dim}\{\operatorname{Span}\{\operatorname{cols}(A)\}\}$

$$
\begin{gathered}
A=\left[\begin{array}{ll}
a & 0 \\
0 & b \\
0 & 0
\end{array}\right] \quad A=\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & 0
\end{array}\right] \\
2
\end{gathered}
$$

- $\operatorname{Rank}\{A\}=\operatorname{dim}\{\operatorname{Span}\{\operatorname{cols}(A)\}\} \leq \min (M, N)$

Can rank be larger than input $\operatorname{dim}(\mathrm{A})$? No!
Where do the rest of the dimensions go? To the null space

Null Space

- Definition: The null-space of $A \in \mathbb{R}^{N \times M}$ is the set of all vectors \vec{x} $\in \mathbb{R}^{M}$ such that: $A \vec{x}=\overrightarrow{0}$

How many solutions for \vec{x} satisfy the above?

Example: what is the null space?

$\overrightarrow{0}$ is always in the null space - trivial Null space

Example: what is the null space?

Example

$$
A \vec{x}=\vec{b}
$$

We know that $\vec{v}_{0} \in \operatorname{Null}(A)$

$$
\rightarrow A \vec{v}_{0}=\overrightarrow{0}
$$

We know 1 solution: \vec{x}_{0}

$$
\rightarrow A \vec{x}_{0}=\vec{b}
$$

Then: $\vec{x}_{0}+\alpha \vec{v}_{0}$ is also a solution

$$
\begin{aligned}
\rightarrow A\left(\vec{x}_{0}+\alpha \vec{v}_{0}\right) & =A \vec{x}_{0}+A\left(\alpha \vec{v}_{0}\right) \\
& =\vec{b}+\alpha A \vec{v}_{0} \\
& =\vec{b}
\end{aligned}
$$

Back to Tomography!

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right.
$$

$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right.$

0
$\left.\begin{array}{r|r}-1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 0\end{array}\right]$
x_{4} is a free variable

$$
\begin{aligned}
& x_{1}-x_{4}=0 \rightarrow x_{1}=x_{4} \\
& x_{2}+x_{4}=0 \rightarrow x_{2}=-x_{4} \\
& x_{3}+x_{4}=0 \rightarrow x_{3}=-x_{4} \\
& \Rightarrow \vec{x}=\alpha[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array} \underbrace{}_{\substack{\text { pick } \\
x_{4}=\alpha}}
\end{aligned}
$$

Rank

- $A \in \mathbb{R}^{N \times M}, \operatorname{Rank}\{A\}=\operatorname{dim}\{\operatorname{Span}\{\operatorname{cols}\{A\}\}\}$
- $\operatorname{Rank}\{A\}=\operatorname{dim}\{\operatorname{Span}\{A\}\} \leq \min (M, N)$
- Rank $=L$, mean the matrix $A \in \mathbb{R}^{N \times M}$ has L independent rows \& columns
- $\operatorname{Rank}\{A\}+\operatorname{dim}\{\operatorname{Null}\{A\}\}=M$

Rank-Nullity Theorem
"Full rank" means rank is max possible $(\min (\mu, N))$

