

## EECS 16A

Page Rank, Eigenvalues and Eigenspaces

## Jargon Roundup

- range/span of matrix $A$ is the set of all possible linear combinations of the column vectors (all the outputs it can get to)

Jargon Roundup
"Full rank" means rank is max possible $(\min (M, N))$

- rank is the dimension of the span of the columns of matrix A

$$
\begin{aligned}
\operatorname{dim}(\operatorname{colspan}(A)) & =\text { the \# of independent cols } \\
& =\# \text { of cols with pivots } \\
& =\operatorname{dim}(\text { rowspace }(A))
\end{aligned}
$$

\#independent cols of $A=\#$ independent rows of $A$
EX. $\left[\begin{array}{ll}a & b \\ c & d \\ e & f\end{array}\right]$
$3 \times 2$ max can have max rank of 2 !

Jargon Roundup

- nullspace of matrix A is the set of solutions to $A x=\overrightarrow{0}$

Definition: $N(A) \stackrel{\oint^{\text {is }}}{\equiv}\{\vec{x} \mid A \vec{x}=\overrightarrow{0}, \underbrace{\vec{x} \in \mathbb{R}^{N}}_{\substack{\text { defined } \\ \text { size of } \\ \text { input }}}\}$ of $A^{\prime \prime}$
solve -
input
vectors
Ex:

$\operatorname{dim}(\operatorname{colspace}(A))=2$
Rank-Nullity
$\operatorname{dim}(\operatorname{nullspace}(A))=1 \quad$ Theorem lin ind. cant reach $z$ !

## Jargon Roundup

- vector space is a set of vectors connected by two operators $(+, x)$ that obeys the 10 axioms
- Vector Addition
- Associative: $\vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w}$ for any $\vec{v}, \vec{u}, \vec{w} \in \mathbb{V}$.
- Commutative: $\vec{u}+\vec{v}=\vec{v}+\vec{u}$ for any $\vec{v}, \vec{u} \in \mathbb{V}$.
- Additive Identity: There exists an additive identity $\overrightarrow{0} \in \mathbb{V}$ such that $\vec{v}+\overrightarrow{0}=\vec{v}$ for any $\vec{v} \in \mathbb{V}$
- Additive Inverse: For any $\vec{v} \in \mathbb{V}$, there exists $-\vec{v} \in \mathbb{V}$ such that $\vec{v}+(-\vec{v})=\overrightarrow{0}$. We call $-\vec{v}$ the additive inverse of $\vec{v}$.
- Closure under vector addition: For any two vectors $\vec{v}, \vec{u} \in \mathbb{V}$, their sum $\vec{v}+\vec{u}$ must also be in $\mathbb{V}$.
- Scalar Multiplication
- Associative: $\alpha(\beta \vec{v})=(\alpha \beta) \vec{v}$ for any $\vec{v} \in \mathbb{V}, \alpha, \beta \in \mathbb{R}$.
- Multiplicative Identity: There exists $1 \in \mathbb{R}$ where $1 \cdot \vec{v}=\vec{v}$ for any $\vec{v} \in \mathbb{V}$. We call 1 the multiplicative identity.
- Distributive in vector addition: $\alpha(\vec{u}+\vec{v})=\alpha \vec{u}+\alpha \vec{v}$ for any $\alpha \in \mathbb{R}$ and $\vec{u}, \vec{v} \in \mathbb{V}$.
- Distributive in scalar addition: $(\alpha+\beta) \vec{v}=\alpha \vec{v}+\beta \vec{v}$ for any $\alpha, \beta \in \mathbb{R}$ and $\vec{v} \in \mathbb{V}$
- Closure under scalar multiplication: For any vector $\vec{v} \in \mathbb{V}$ and scalar $\alpha \in \mathbb{R}$, the product $\alpha \vec{v}$ must also be in $\mathbb{V}$.


## Jargon Roundup

- vector subspace is a subset of vectors from a vector space that obey 3 properties

Definition 8.1 (Subspace): A subspace $\mathbb{U}$ consists of a subset of the vector space $\mathbb{V}$ that satisfies the following three properties:

- Contains the zero vector: $\overrightarrow{0} \in \mathbb{U}$.

Note 8

- Closed under vector addition: For any two vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}} \in \mathbb{U}$, their sum $\overrightarrow{v_{1}}+\overrightarrow{v_{2}}$ must also be in $\mathbb{U}$.
- Closed under scalar multiplication: For any vector $\vec{v} \in \mathbb{U}$ and scalar $\alpha \in \mathbb{R}$, the product $\alpha \vec{v}$ must also be in $\mathbb{U}$.


## Jargon Roundup

- column space is the span(range) of the columns of a matrix
- row space is the span of the rows of a matrix

Jargon Roundup

$$
A=\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

$$
\operatorname{dim}(\operatorname{cols}(A))=3
$$

$$
\text { spans } \mathbb{R}^{3}
$$

$$
\operatorname{dim}(\operatorname{cols}(B))=2
$$

$$
\text { rank }=3 \text { (full rank) }
$$

$$
\text { spans 2D plane in } R^{3}
$$

$$
\text { rank }=2 \text { (full rank) }
$$

- dimension of a vector space is the number of basis vectors (degrees-of-freedom)
- A basis for a vector space is a minimum set of vectors needed to represent all vectors in the space

$$
\begin{aligned}
& \begin{array}{c}
\operatorname{dim}(N u l l(c)) \\
\downarrow=1
\end{array} \\
& C=\left[\begin{array}{cccc}
1 & 0 & 5 & 3 \\
2 & 0 & 10 & 6
\end{array}\right]_{2 \times 4}^{r_{\text {san }}} \\
& \operatorname{dim}(\cos (c))=81 \\
& \text { rank=1 }
\end{aligned}
$$

## Today's jargon!

$$
\begin{aligned}
& \text { 'hypervolumé? } \\
& \text { 'volume' }
\end{aligned}
$$

- Determinant is the 'area' of a matrix


## The Determinant

- For $A \in \mathbb{R}^{2 \times 2}$

$$
\operatorname{det}(A)=\left(\left[\begin{array}{ll}
b \\
b \\
d
\end{array}\right)=a d-b c\right.
$$

When $\operatorname{det}(A) \neq 0, A$ is invertible
Recall:

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

## Interpretation of Determinant of a Matrix in $\mathbb{R}^{2 \times 2}$

- Area of a parallelogram


$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { Area } \neq 0} \\
& {\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \text { Area } \neq 0}
\end{aligned}
$$

$$
\operatorname{det}(A)=\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$



$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]_{\text {Area }=0}
$$

Interpretation of Determinant of a Matrix in $\mathbb{R}^{2 \times 2}$

- Area of a parallelogram

$$
\operatorname{det}(A)=\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$



$$
(c+d)(a+b)
$$

$\square$ $\times 2 \quad b c \times 2$
$\qquad$ $\times 2 \quad \frac{1}{2} a c \times 2$


$$
\begin{aligned}
\text { area } & =(a+b)(c+d)-2 b c-a c-b d \\
& =a c+a d+b c+b d-2 b c-a c-b d \\
& =a d-b c
\end{aligned}
$$

Determinant in $\mathbb{R}^{3}$


## Today's jargon!

- New example: PageRank



## PageRank

- Ranks websites based on how many high-ranked pages link to them



## PageRank

(2)


PageRank

$$
\vec{x}(t+1)=\left[\begin{array}{cccc}
0 & \frac{1}{2} & 0 & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & 0 & \frac{1}{2} \\
\frac{1}{3} & \frac{1}{2} & 1 & 0
\end{array}\right]_{\text {"Poge Rank" }}
$$



Let's start equal

$$
\vec{x}(0)=\left[\begin{array}{c}
1 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right] \vec{x}(1)=\left[\begin{array}{l}
0.125 \\
0.208 \\
0.208 \\
0.458
\end{array}\right] \vec{x}(2)=\left[\begin{array}{c}
0.104 \\
0.271 \\
0.271 \\
0.354
\end{array}\right] \rightarrow \vec{x}(100)=\left[\begin{array}{c}
0.12 \\
0.24 \\
0.24 \\
0.4
\end{array}\right] \vec{x}(101)=\left[\begin{array}{c}
0.12 \\
0.24 \\
0.24 \\
0.4
\end{array}\right]
$$

## PageRank steady state

$$
\vec{x}(t+1)=\left[\begin{array}{cccc}
0 & \frac{1}{2} & 0 & 0 \\
\frac{1}{3} & 0 & 0 & \frac{1}{2} \\
\frac{1}{3} & 0 & 0 & \frac{1}{2} \\
\frac{1}{3} & \frac{1}{2} & 1 & 0
\end{array}\right] \vec{x}(t)
$$



What does it mean when $\vec{x}(t+1)=\vec{x}(t)$ ?
That Laura is the most important!
(also, we have converged to a steady state)

$$
\text { check: }\left[\begin{array}{cccc}
0 & 1 / 2 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
0.12 \\
0.24 \\
0.24 \\
0.4
\end{array}\right]=\left[\begin{array}{c}
0.12 \\
0.24 \\
0.24 \\
0.4
\end{array}\right]
$$

$$
\underset{x}{x}(100)=\left[\begin{array}{c}
0.12 \\
0.24 \\
0.24 \\
0.4
\end{array}\right] \vec{x}(101)=\left[\begin{array}{c}
0.12 \\
0.24 \\
0.24 \\
0.4
\end{array}\right]
$$



## General Steady-state solution

What if it doesn't converge until $\mathrm{t}=1,000,000$ ?
Do I need to compute every step?

$$
\begin{aligned}
& \vec{x}_{S S}=Q \cdot \vec{x}_{S S} \\
& Q \cdot \vec{x}_{S S}-\vec{x}_{S S}=\overrightarrow{0} \\
&(Q-?) \vec{x}_{S S}=\overrightarrow{0} \\
& Q \cdot \vec{x}_{S S}-I \vec{x}_{S S}=\overrightarrow{0} \\
&(Q-I) \vec{x}_{S S}=\overrightarrow{0}
\end{aligned}
$$

The $\operatorname{Null}(Q-I)$ is the steady state solution! We can find it with.... Gaussian Elimination!

Example:

$$
P=\left[\begin{array}{lll}
3 & 1 & 2 \\
3 & 2 & 0 \\
0 & 3 & 4
\end{array}\right]
$$

$\vec{x}^{*}=P \vec{x}^{*}$ if equilibrium exists, then steady-state solution

$$
P \vec{x}^{x}-I \vec{x}^{*}=\overrightarrow{0}
$$

$\uparrow$ doesn't change equ, but materies up dims.

$$
\begin{gathered}
(\underbrace{\left(\begin{array}{ll}
P & \text { form! }
\end{array} \vec{x}^{x}=\overrightarrow{0}\right.}_{A \vec{x}=\vec{b}} \\
\left(\left[\begin{array}{lll}
1 / 2 & 1 / 6 & 1 / 3 \\
1 / 2 & 1 / 3 & 0 \\
0 & 1 / 2 & 2 / 3
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
x_{1}^{*} \\
x_{2}^{*} \\
x_{3}^{*}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
-1 / 2 & 1 / 6 & 1 / 3 & 0 \\
1 / 2 & -2 / 3 & 0 & 0 \\
0 & 1 / 2 & -1 / 3 & 0
\end{array}\right] \\
\downarrow G \cdot E .
\end{gathered}
$$

infinite solutions

$$
\vec{x}^{*}=\left[\begin{array}{ll}
8 \alpha \\
6 \alpha \\
9 \alpha
\end{array}\right] \quad \alpha \in \mathbb{R}
$$

$$
\begin{aligned}
& \text { Check } \begin{aligned}
P \vec{x}^{*} & =\left[\begin{array}{ccc}
1 / 2 & 1 / 6 & 1 / 3 \\
1 / 2 & 1 / 3 & 0 \\
0 & 1 / 2 & 2 / 3
\end{array}\right]\left[\begin{array}{l}
8 \\
6 \\
9
\end{array}\right] \\
& =\left[\begin{array}{l}
8 \\
6 \\
9
\end{array}\right] \checkmark \begin{array}{r}
\text { input is } \\
\text { same as } \\
\text { output! }
\end{array}
\end{aligned}
\end{aligned}
$$

## Today's jargon!

## WHAT GIVES PEOPLE FEELINCS OF POWER

- Eigenvalue
- Eigenvector


## Eigen Values

We saw an example for a steady-state vector

$$
\begin{aligned}
& Q \cdot \vec{x}_{S S}=1 \cdot \vec{x}_{S S} \\
& \text { can Scale vector did not change! } \\
& \text { by any real cause its a SPACE } \\
& \text { Direction, and size of the } \\
& \text { can Scale vector did not change! } \\
& \text { by any real cause its a SPACE }
\end{aligned}
$$

We will now look at the more general case

In this case, we say that
$\vec{x}$ is an Eigenvector of $Q$ with Eigen Value $\lambda$

$$
\text { selfinemar } Q \cdot \vec{x}=\lambda \cdot \vec{x}
$$

and $\operatorname{span}\{\vec{x}\}$ is the associated Eigen-space

## Eigen Values

$$
Q \cdot \vec{x}=\lambda \cdot \vec{x}
$$

What happens if, $\lambda=1$ ?
$\lambda>1$ ?
$\lambda<1$ ?


How well do you function in a matrixed environment?


* So long as my eigenvalue is always 1 , just fine.
snrky.com

Take a break and watch the official EECS band, called "the Positive Eigenvalues", singing the Cure:

- https://www.youtube.com/watch?v=LEHXEJ-ctpY

Finding the eigenvalues and eigenvectors (in that order)
$Q=\left[\begin{array}{ll}1 / 2 & 0 \\ 1 / 2 & 1\end{array}\right] \quad$ Want to find $\lambda, \vec{x}$ such that $Q \vec{x}=\lambda \vec{x}$
$Q \vec{x}=\lambda \vec{x}$

$$
\begin{aligned}
& Q \vec{x}=\lambda \vec{x} \\
& Q \vec{x}-\lambda \vec{x}=\overrightarrow{0} \\
& (Q-\lambda I) \vec{x}=\overrightarrow{0}
\end{aligned}
$$

Find $\vec{x} \in \operatorname{Null}(Q-\lambda I): Q-\lambda I=\left[\begin{array}{ll}1 / 2 & 0 \\ 1 / 2 & 1\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]=\left[\begin{array}{cc}1 / 2-\lambda & 0 \\ 1 / 2 & 1-\lambda\end{array}\right]$
There will only be $a_{\text {non }}$ null space if $\operatorname{det}(R-\lambda I)=0$ non-trudid
$\operatorname{det}(Q-\lambda I)=0$

$$
(1 / 2-\lambda)(1-\lambda)-(0) \cdot 1 / 2=0
$$

Characteristic polynomial

$$
\lambda_{1}=1 / 2, \lambda_{2}=1
$$

## Finding the eigenvalues and eigenvectors (in that order)

$$
Q=\left[\begin{array}{ll}
1 / 2 & 0 \\
1 / 2 & 1
\end{array}\right] \text { Want to find } \lambda, \vec{x} \text { such that } Q \vec{x}=\lambda \vec{x}
$$

Characteristic polynomial | $\operatorname{det}(Q-\lambda I)=0$ |
| ---: |
| $(1 / 2-\lambda)(1-\lambda)-(0) \cdot 1 / 2=0$ |
| $(1 / 2-\lambda)(1-\lambda)=0$ |
| $\lambda_{1}=1 / 2, \lambda_{2}=1$ |

When $\lambda_{1}=1 / 2, Q-\lambda I=0$

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
1 / 2-\lambda & 0 & 0 \\
1 / 2 & 1-\lambda & 0
\end{array}\right]} \\
& {\left[\begin{array}{cc|c}
0 & 0 & 0 \\
1 / 2 & 1 / 2 & 0
\end{array}\right]} \\
& \text { Eigenvector } \vec{v}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right] \quad \text { Eigenvector } \vec{u}=\left[\begin{array}{l}
0 \\
2
\end{array}\right] \\
& \text { For eigenvalue } \lambda_{1}=1 / 2 \quad \text { for eigenvalue } \lambda_{2}=1 \\
& \begin{array}{c}
\lambda_{2}=1 \\
{\left[\begin{array}{cc|c}
1 / 2-1 & 0 & 0 \\
1 / 2 & 1-1 & 0
\end{array}\right]}
\end{array} \\
& {\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] x_{1}+x_{2}=0 \rightarrow x_{1}=-x_{2} \quad Q \vec{v}=1 / 2 \vec{v} \quad Q \vec{u}=1 \vec{u} \quad\left[\begin{array}{cc|c}
-1 / 2 & 0 & 0 \\
1 / 2 & 0 & 0
\end{array}\right]} \\
& \vec{x}_{1} \in \operatorname{span}\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right) \\
& {\left[\begin{array}{ll}
1 / 2 & 0 \\
1 / 2 & 1
\end{array}\right] \quad\left[\begin{array}{c}
2 \\
-2
\end{array}\right]=\left[\begin{array}{l}
1 / 2 \cdot 2+0(-2) \\
1 / 2 \cdot 2+1(-2)
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]} \\
& \begin{array}{r}
{\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]^{x_{1}=0} \quad \vec{x}_{2}=\alpha\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
\vec{x}_{2} \in \operatorname{spar}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
\end{array}
\end{aligned}
$$

## Summary: Eigenvalues and Eigenvectors




## Eigen-faces for human face recognition



## Eigen Values and Eigen Vectors

can be complex $\lambda \in G_{\text {, but not }}$ in EECSI6A
-Definition: Let $Q \in \mathbb{R}^{N \times N}$ be a square matrix, and $\lambda \in \mathbb{R}$
if $\exists \vec{x} \neq \overrightarrow{0}$ such that $Q \vec{x}=\lambda \vec{x}$,
then $\lambda$ is an eigenvalue of $Q, \vec{x}$ is an eigenvector and $\operatorname{Null}(Q-\lambda I)$ is its eigenspace.

## Disciplined Approach:

## $A \vec{v}=\lambda \vec{v}$

1. Form $B_{\lambda}=A-\lambda I$
2. Find all the $\lambda$ s resulting in a non-trivial null space for $B_{\lambda}$

- Solve: $\operatorname{det}\left(B_{\lambda}\right)=0$
- $\rightarrow \mathrm{N}^{\mathrm{th}}$ order characteristic polynomial with N solutions
- Each solution is an eigenvalue!

3. For each $\lambda$ find the vector space $\operatorname{Null}\left(B_{\lambda}\right)$

## Solutions for the Characteristic Polynomial

$$
\begin{gathered}
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right]\right)=(a-\lambda)(d-\lambda)-b c=0 \\
\lambda^{2}-(a+d) \lambda+(a d-b c)=0
\end{gathered}
$$

- Three cases:
- Two real distinct eigenvalues
- Single repeated eigenvalue
- Two complex-valued eigenvalues

