

EECS 16A

More Eigenstuff

Admin

- Midterm 1 is soon! Wed, March 1
- Exam is open book (but you should make a cheat sheet!)
- DSP accommodations: please submit letters by tomorrow
- Review: Lectures, Discussions, Labs, read the Notes!!

Eigenvalues and Eigenvectors

Are eigenvectors unique? No, they just give direction; eigenspaces are unique

Eigen Values and Eigen Vectors

- Definition: Let $Q \in \mathbb{R}^{N \times N}$ be a square matrix, and $\lambda \in \mathbb{R}$
if $\exists \vec{x} \neq \overrightarrow{0}$ such that $Q \vec{x}=\lambda \vec{x}$,
then λ is an eigenvalue of Q, \vec{x} is an eigenvector and $\operatorname{Null}(Q-\lambda I)$ is its eigenspace.

Solutions for the Characteristic Polynomial

$$
\begin{gathered}
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right]\right)=(a-\lambda)(d-\lambda)-b c=0 \\
\lambda^{2}-(a+d) \lambda+(a d-b c)=0
\end{gathered}
$$

Can solve by factoring or use quadratic equation:

$$
\lambda=\frac{(a+d) \pm \sqrt{(a+d)^{2}-4(a d-b c)}}{2}
$$

- Three cases:
- Two real distinct eigenvalues
- Single repeated eigenvalue
-Two complex-valued eigenvalues

Eigenvectors make good basis sets

Today we will show that the eigenvectors of a matrix form a basis set, and why it's a useful basis set!

Some eigenfaces

Human face recognition uses eigenfaces

- Make a vector space of face images
- Find a basis set (eigenvectors) of all images
- This smaller set of eigenfaces can be used to represent all faces by linear combinations

Matrix transformations

$A \vec{v}=\lambda \vec{v}$

What does the matrix do?
stretches in y-direction by $2 x$

What is the A matrix?

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

What are its eigenvectors?

What are its eigenvalues?

$$
1,2
$$

Eigen Value Decomposition

$$
A \vec{v}=\lambda \vec{v}
$$

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

(1) calculate $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}1-\lambda & 0 \\ 0 & 2 \cdot \lambda\end{array}\right]\right)=\underbrace{(1-\lambda)(2-\lambda)}_{\text {Characteristic Polynomial }}-0.0$
(2) Solve for eigenvals $\lambda_{1}=1, \lambda_{2}=2$
(3) Find eigenvector/space for each eigval by calculating the $\operatorname{Null}(A-\lambda I)$:

$$
\left.\begin{array}{ll}
\lambda_{1}=1 & \begin{array}{c}
\text { eigenval is associated }
\end{array}
\end{array} \begin{array}{cc}
1-\lambda_{2} & 0 \\
0 & 2-\lambda_{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 \\
0
\end{array}\right] .
$$

Eigen Value Decomposition

$$
A \vec{v}=\lambda \vec{v}
$$

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

$$
\begin{array}{llll}
\lambda_{1}=1 & \vec{v}_{1}=[1] & \lambda_{2}=2 & \vec{v}_{2}=\left[0_{0}\right]
\end{array}
$$

check:

$$
\begin{aligned}
& A \vec{v}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
&=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& A \vec{v}_{1}=\lambda_{1} \vec{v}_{1}
\end{aligned}
$$

$$
\begin{aligned}
A \vec{v}_{2} & =\left[\begin{array}{l}
10 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
2
\end{array}\right] \\
A \vec{v}_{2} & =2 \cdot \vec{v}_{2}=\lambda_{2} \vec{v}_{2}
\end{aligned}
$$

Eigenvectors as a basis

$A \vec{v}=\lambda \vec{v}$

$$
\begin{aligned}
& \lambda_{1}=1 \quad \vec{v}_{1}=[1] \rightarrow A \vec{v}_{1}=1 \vec{v}_{1} \\
& \text { What about } \vec{v}_{3}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { ? } \\
& {\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=1 \cdot\left[\begin{array}{c}
1 \\
0 \\
\frac{1}{v_{1}}
\end{array}\right]+\underset{\substack{1 \\
v_{1}}}{1} \cdot\left[\begin{array}{l}
0 \\
i
\end{array}\right]} \\
& =1 \cdot \vec{v}_{1}+1 \cdot \vec{v}_{2} \\
& A \vec{u}=A\left(\vec{v}_{1}+\vec{v}_{2}\right) \\
& =A \vec{v}_{1}+A \vec{v}_{2} \\
& =1 \vec{v}_{1}+2 \vec{v}_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] \checkmark
\end{aligned}
$$

Recall:

$$
\begin{array}{lll}
A=\left[\begin{array}{ll}
1 / 2 & 0 \\
1 / 2 & 1
\end{array}\right] & \lambda_{1}=1 / 2 & \lambda_{2}=1 \\
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] & \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{array}
$$

\vec{v}_{1}, \vec{v}_{2} are linearly independent \rightarrow basis for \mathbb{R}^{2}

What about $\vec{u}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$?

decompose into eigenvectors

$$
\vec{u}=\alpha \vec{v}_{1}+\beta \vec{v}_{2}
$$

$$
\begin{aligned}
{\left[\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] } & =\left[\begin{array}{c}
2 \\
2
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & 0 & 2 \\
-1 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 4
\end{array}\right] \rightarrow \begin{array}{l}
\alpha=2 \\
\beta=4
\end{array} \\
\vec{u} & =2 \vec{v}_{1}+4 \vec{v}_{2}
\end{aligned}
$$

$$
\begin{aligned}
A \vec{u} & =A\left(2 \vec{v}_{1}+4 \vec{v}_{2}\right) \\
& =2 A \vec{v}_{1}+4 A \vec{v}_{2} \\
& =2\left(\frac{1}{2} \vec{v}_{1}\right)+4\left(\vec{v}_{2}\right) \\
& =\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+4\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
\end{aligned}
$$

Matrix transformations

$A \vec{v}=\lambda \vec{v}$

What does the matrix do?
scales both axes by $2 x$

What is the A matrix?

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

What are its eigenvectors?

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

What are its eigenvalues?

$$
2,2
$$

Repeated EigenValues

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=\left[\begin{array}{cc}
2-\lambda & 0 \\
0 & 2-\lambda
\end{array}\right] & =(2-\lambda)(2-\lambda)-0=0 \\
\lambda_{1,2} & =2 \\
& \operatorname{Null}(A-2 I)
\end{aligned}=\operatorname{Null}(\overrightarrow{0})=\mathbb{R}^{2} \quad \$.
$$

Eigen space is 2D!

Repeated EigenValues

$A \vec{v}=\lambda \vec{v}$

$\operatorname{Null}(A-2 I)=\operatorname{Null}(\overrightarrow{0})=\mathbb{R}^{2}$

What is the eigenvector? anything in \mathbb{R}^{2} keeps its direction and is just scaled by 2
So i can pick any 2 vectors as basis for that space

In general, multiplicity of Eigen-values will result in a multi-dimensional eigenspace Except if the matrix is defective (iii)

Defective Matrices?

$A \vec{v}=\lambda \vec{v}$

What does the matrix do?
shearing transform

What is the A matrix?

$$
A=\left[\begin{array}{cc}
1 & 1 / 4 \\
0 & 1
\end{array}\right]
$$

What are its eigenvectors?

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

What are its eigenvalues?
1

Defective Matrix?

Outside of class scope ;)

$$
A=\left[\begin{array}{cc}
1 & 1 / 4 \\
0 & 1
\end{array}\right]
$$

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left[\begin{array}{cc}
1-\lambda & 1 / 4 \\
0 & 1-\lambda
\end{array}\right]=(1-\lambda)(1-\lambda)-0=0 \\
\lambda_{1,2}=1 \\
\operatorname{Null}(A-I)=\operatorname{Null}\left\{\left[\begin{array}{cc}
0 & 1 / 4 \\
0 & 0
\end{array}\right]\right\} \\
\vec{v}_{1} \in \operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right\}\right\}
\end{gathered}
$$

Eigen space is only 1 dimensional!
Matrix is called defective (10)

Matrix transformations - Complex Eigenvalues

What does the matrix do?

What is the A matrix?

$$
\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

What are its eigenvectors?

$$
\begin{aligned}
& \text { which vectors stay same } \\
& \text { direction? NONE Holy } \\
& \text { cow? }
\end{aligned}
$$

What are its eigenvalues?
complex! outside scope

$$
\text { EXCEPT if } 180^{\circ} \text { rotation }
$$

Application: Rotating the coordinate system

Last time: PageRank eigenvectors and eigenvalues

THE $\$ 25,000,000,000^{*}$ EIGENVECTOR THE LINEAR ALGEBRA BEHIND GOOGLE

KURT BRYAN ${ }^{\dagger}$ AND TANYA LEISE ${ }^{\ddagger}$
Abstract. Google's success derives in large part from its PageRank algorithm, which ranks the importance of webpages according to an eigenvector of a weighted link matrix. Analysis of the PageRank formula provides a

What do the eigenvectors and eigenvalues here mean?

Describes behavior of system after many timesteps, in order to find "popularity" of each site.

Recall:

$$
\vec{x}(t+1)=\left[\begin{array}{cccc}
0 & \frac{1}{2} & 0 & 0 \\
\frac{1}{3} & 0 & 0 & \frac{1}{2} \\
\frac{1}{3} & 0 & 0 & \frac{1}{2} \\
\frac{1}{3} & \frac{1}{2} & 1 & 0
\end{array}\right] \vec{x}(t)
$$

What does it mean when $\vec{x}(t+1)=\vec{x}(t)$?
That Laura is the most important! (also, we have converged to a steady state)

$A \vec{x}=1 \vec{x}$

General Initialization for a Transition Matrix System

$$
\vec{x}(t+1)=A \vec{x}(t)
$$

* assume all eigrals are distinct and they together span \mathbb{R}^{N}
$\vec{x}(t=1)=A \vec{x}(0) \longrightarrow$ decompose initial state into eigvecs

$$
=A\left(\alpha_{1} \vec{v}_{1}+\alpha_{2} \vec{v}_{2}+\ldots \alpha_{N} \vec{v}_{N}\right)
$$

$$
=\alpha_{1} A \vec{v}_{1}+\alpha_{2} A \vec{v}_{2}+\ldots+\alpha_{N} A \vec{v}_{N}
$$

$$
\begin{aligned}
& =\alpha_{1} A v_{1}+\alpha_{2} A V_{2}+\ldots+\lambda_{N} \vec{v}_{N} \\
& =\alpha_{1} \lambda_{1} \vec{v}_{1}+\alpha_{2} \lambda_{2} \vec{v}_{2}+\ldots+\alpha_{1}
\end{aligned}
$$

$$
\begin{aligned}
\vec{x}(2) & =A \vec{x}(1) \\
& =A\left(\alpha_{1} \lambda_{1} \vec{v}_{1}+\alpha_{2} \lambda_{2} \vec{v}_{2}+\ldots \alpha_{N} \lambda_{N} \vec{v}_{N}\right) \\
& =\alpha_{1} \lambda_{1} A \vec{v}_{1}+\alpha_{2} \lambda_{2} A \vec{v}_{2}+\ldots \alpha_{N} \lambda_{N} A \vec{v}_{N}
\end{aligned}
$$

$$
\lim _{t \rightarrow \infty} \vec{x}(t)=?
$$

step nigh es pow n?

$$
\begin{array}{ll}
\lambda<1 & \lambda^{\infty} \rightarrow 0 \\
\lambda>1 & \lambda^{\infty} \rightarrow \infty \\
\lambda=1 & \lambda^{\infty} \rightarrow 1 \\
\lambda=-1 & \text { flip flops. }
\end{array}
$$

Eigenstuff for PageRank

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
0 & 1 / 2 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 1 & 0
\end{array}\right] \\
\underbrace{\text { solve for eig stuft }} \\
\lambda_{1}=1 \\
\lambda_{2}=-0.092 \\
\lambda_{3}=-0.91 \\
\vec{v}_{1}=\left[\begin{array}{c}
0.12 \\
0.24 \\
0.24 \\
0.4
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
0.44 \\
-0.08 \\
-0.08 \\
-0.28
\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{c}
-0.14 \\
0.26 \\
0.26 \\
-0.37
\end{array}\right] \quad \vec{v}_{4}=\left[\begin{array}{c}
0.43 \\
0 \\
-0.14 \\
-0.29
\end{array}\right]
\end{gathered}
$$

Eigenstuff for PageRank

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-0.092 \\
& \lambda_{3}=-0.91 \\
& \lambda_{4}=0 \\
& \vec{v}_{1}=\left[\begin{array}{c}
0.12 \\
0.24 \\
0.24 \\
0.4
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
0.44 \\
-0.08 \\
-0.08 \\
-0.28
\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{c}
-0.14 \\
0.26 \\
0.26 \\
-0.37
\end{array}\right] \quad \vec{v}_{4}=\left[\begin{array}{c}
0.43 \\
0 \\
-0.14 \\
-0.29
\end{array}\right] \\
& \vec{x}(t)=A^{t} \vec{x}(0) \quad \vec{x}_{0}=\left[\begin{array}{c}
0.25 \\
0.25 \\
0.25 \\
0.25
\end{array}\right]=\alpha_{1} \vec{v}_{1}+\alpha_{2} \vec{v}_{2}+\alpha_{3} \vec{v}_{3}+\alpha_{4} \vec{v}_{4}
\end{aligned}
$$

Eigenstuff for PageRank

$$
\begin{array}{llll}
\lambda_{1}=1 & \lambda_{2}=-0.092 & \lambda_{3}=-0.91 & \lambda_{4}=0
\end{array}
$$

$$
\begin{aligned}
A^{t} \vec{x}(0) & =A\left(1 \vec{v}_{1}+0.34 \vec{v}_{2}+0.15 \vec{v}_{3}+0 \vec{v}_{4}\right) \\
& =1 \cdot 1^{t} \vec{v}_{1}+0.34\left(\vec{v}_{2}+0.1\right.
\end{aligned}
$$

$$
\lim _{t \rightarrow \infty} A^{t} \vec{x}(0)=\vec{v}_{1}
$$

What if $\lambda_{2}=1.001 ? \quad \mathrm{~V} 2$ would explode with time!
What if $\lambda_{2}=0.999 ? \quad$ V2 would slowly die; might take more than 100 time steps to get to steady state with this v2 vector at zero

Design of a Reflection matrix

Design a reflection matrix around the vector $\left[\begin{array}{l}2 \\ 1\end{array}\right]$?
Q: What are the eigenvectors?
$A: \vec{v}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$

Q: What are the eigenvalues?

$$
\mathrm{A}: \lambda_{1}=1, \lambda_{2}=-1
$$

Designing a matrix with specific Eigenvals/vecs

We know:

$$
A \vec{v}=\lambda \vec{v}
$$

$$
\begin{array}{r}
\vec{v}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \\
\lambda_{1}=1, \lambda_{2}=-1
\end{array}
$$

Set linear equations:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right]\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=+\left[\begin{array}{ccc}
\alpha & 1 & 0 \\
0 & 0 & \alpha \\
-1 \\
-1 & \alpha & 0 \\
0 \\
0 & 0 & -1 \\
\hline
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]=\left[\begin{array}{c}
\alpha \\
1 \\
1 \\
-\alpha
\end{array}\right]} \\
& \text { unknown }_{G}^{A} A=\left[\begin{array}{cc}
0.6 & 0.8 \\
0.8 & -0.6
\end{array}\right]
\end{aligned}
$$

Recall: Single-pixel camera lab

Imaging Model and Reconstruction

We saw that it is possible to come up with a system that has A^{-1} So,

$$
\vec{x}=A^{-1} \vec{y}
$$

Non-ideal imaging

Measurement mask/matrix

We saw that it is possible to come up with a system that has A^{-1} So,

$$
\vec{x}=A^{-1} \vec{y}-A^{-1} \vec{w}
$$

Reconstruction error

$$
A^{-1} \vec{w}=\alpha_{1} \lambda_{1} \vec{v}_{1}+\alpha_{2} \lambda_{2} \vec{v}_{2}+\cdots+\alpha_{N} \lambda_{N} \vec{v}_{N}
$$

The End

... of Module 1

Recap of 16A (so far)

1.Equations

2. Matrix vector multiplication
3. Gaussian elimination
4. Span, linear independence
5. Matrices as transformations
6. Matrix inversion
7. Column space, null space
8. Eigenvalues ; Eigenspace
