

Vide source: www.afrotechmods.com Do not try this at home (or in the EECS 16A Lab)

Admin

First Midterm Exam: Wednesday March 1, 7-9pm Covers Module 1 Material up to 2/16 lecture.

Today: We Start Module 2!

Designing Information Devices and Systems

System Example – Face ID

Analog World

Sensor

Processing

Actuation

sturb

System Example – Brain Machine Interface

System Example – Brain-Machine Interface

In Module 2 we will learn how to analyze circuits

Electronic Devices depend on movement of charges

Electrical Quantities

Quantities	Analytical Symbol	Units
Charge	\bigcirc	Coulombs [C]
Current	T	Amperes (A) = [4]
Voltage	\checkmark	Volts [V]
Resistance	R	Ohms $[\Omega] = [V_A]$
Cohm	V = IR	

Where does current come from?

Voltage the difference of two potentials

Definitions needed to analyze a circuit: Circuit Element

An element has some voltage across it and some current through it

Definitions needed to analyze a circuit: Circuit Diagram

Collection of elements, where each element has some voltage across it and some current through it

Voltage is the Difference of Two Potentials

Voltage is the Difference of Two Potentials (u)

$$V_{S} = V_{1} + V_{2}$$

$$V_{1} = U_{1} - U_{2} = V_{1} - 0$$

$$V_{2} = U_{2} - U_{3} = 0 - (-V_{2}) = V_{2}$$

Definitions needed to analyze a circuit: Nodes

Nodes: point where elements meet

How many nodes in this circuit? 4 nodes

Definitions needed to analyze a circuit: Branches

Branches: the connections between nodes

How many branches in this circuit? 5

Definitions needed to analyze a circuit: Loops

Loops: any closed path going through circuit elements

How many loops in this circuit?