

Vide source: <u>www.afrotechmods.com</u> Do not try this at home (or in the EECS 16A Lab)

Admin

First Midterm Exam: Wednesday March 1, 7-9pm Covers Module 1 Material up to 2/16 lecture.

Things I shouldn't have to say...

Recap: Nodes, Branches, Loops

Elements? 5

How many nodes in this circuit?

How many branches? 5

How many loops? \leq

Rules for circuit analysis: Kirchoff's Voltage Law (KVL)

Sum of voltages across the elements in a loop equal zero

 $0 - V_1 - V_2 - V_3 - V_4 = 0$ $= V_1 + V_2 + V_3 + V_4 = 0$ 50me can be positive some can be negative $(mix of t \xi -)$

Rules for circuit analysis: Kirchoff's Current Law (KCL) In-element

The current flowing into an element must equal the current flowing out

Rules for circuit analysis: Kirchoff's Current Law (KCL)

The current flowing into any node must equal the current flowing out (a = b) (same as: all currents flowing out of a node sum to 0)

Example Circuit: Find all node voltages and branch currents

potentials

Pick a reference node and label it as <u>0 potential</u> (ground). All voltages are measured relative to this node.

Label all remaining nodes as potentials U_i [$U_1 \dots U_{N-1}$]

Label all branch currents with I_i [$I_1 \dots I_k$]

Add signs + and – element voltages to each element following the passive sign convention

Passive sign convention:
 Positive current enters
 positive voltage terminal

) all currents flowing out of anode = 0 Identify unknowns and reduce using KVL/KCL unknowns: X, I, Jz

 $KCL: I, +I_2 = 0 f$ $I_2 = -I_1 = I f$ KVL° $V_S = U_1 - U_0$ $V_{S} = U_{1} - O$ $V_{\varsigma} = U_{1}$

Identify remaining unknowns and set up a system of linear equations to solve using KVL/KCL/I-V equations

Circuit Analysis Algorithm: Step 7 (if needed)

Is the system of equations complicated? Linear Algebra can help!

Circuit Analysis Algorithm: Step 7 (if needed)

Electronic Design Automation (tool)

SPICE (Simulation Program with Integrated Circuit Emphasis): started as a student project at Berkeley!

Now the basis for open-source electronic circuit simulation, to design and model device characteristics and check circuit boards

Electronic Design Automation (tool)

What Happens When You Short A Voltage Source?

Simplifying Circuit Analysis: The Voltage Divider

Find all node voltages and branch currents

Pick a reference node and label it as 0 potential (ground).

Label all remaining nodes as potentials U_i $[U_1 \dots U_{N-1}]$

Label all branch currents with I_i $[I_1 \dots I_k]$

Add signs + and – element voltages to each element following the passive sign convention

Identify unknowns and reduce using KVL/KCL Unknowns: 1, 1, 1, 1, 1, 1, 13 $V_{S} = U_{I} - O \qquad V_{S} = V_{I}$ KCL: $I_1 + I_2 = 0$ $T = I_2 = -I_1 = I_3$

Identify remaining unknowns and set up a system of linear equations to solve using KVL/KCL/I-V equations

Unknows:
$$I$$
, U_2
ohm's law: $V = IR_1$
 $V_s - U_2 = IR_1$
 $* IR_1 + U_2 = V_s$

$$U_2 - 0 = IR_2$$

$$X IR_2 - U_2 = 0$$

Circuit Analysis Algorithm: Step 7 (if needed)

Is the system of equations complicated? Linear Algebra can help! $A\vec{x} = \vec{b}$

 $\rightarrow IR_1 + U_2 = V_S$ $\rightarrow IR_2 - U_2 = 0$

Voltage Divider Summary

Voltage Divider Analogy

