EECS 16A

Spring 2023 - Profs. Muller & Waller Power and I/V Measurement

GRADING RUBRIC

Midterm is Tomorrow! 7-9pm

PRINT your student ID:				
PRINT AND SIGN your name:	,,		· · · · · · · · · · · · · · · · · · ·	
	(last name)	(first name)	(signature)	
PRINT the time of your discussi	on section and your GSI(s) n	ame:		
PRINT the student IDs of the per	rson sitting on your right:	and	left:	_

General Notes

- This exam has a combination of multiple choice, fill-in-the-blank, and free-response questions.
- You must adhere to the following format to receive full credit:
 - For fill in the blank questions, legibly write your final answer entirely in the provided boxes.
 - For questions with **circular bubbles**, select exactly *one* choice, by filling the bubble \bullet .
 - You must choose either this option.
 Or this one, but not both!
 - For questions with square boxes, you may select *multiple* choices, by filling the squares .
 You could select this choice.
 You could select this one too!
 - For free-response questions please show your work in the provided empty boxes. Doing so enables us to reward you partial credit where applicable.

Midterm is Tomorrow! 7-9pm

1. HONOR CODE

Please read the following statements of the honor code, and sign your name (you don't need to copy it). *I will respect my classmates and the integrity of this exam by following this honor code. I affirm:*

- I have read the instructions for this exam. I understand them and will follow them.
- All of the work submitted here is my original work.
- I did not reference any sources other than my unlimited printed resources.
- I did not collaborate with any other human being on this exam.

Other admin:

* I will take over office hours Wednesday 11am– 12pm in my office 564 Cory Hall

Last Lecture: Kirchoff's Voltage Law (KVL)

Last Lecture: Ohm's Law

Power and Energy in Circuits

Current: flow of charges (electrons moving from point $A \rightarrow B$ inside a material)

Voltage: provides the energy [Joules] to move charge from $A \rightarrow B$. 1 Volt provides 1 Joule of energy to 1 Coulomb of charge.

dt

 $V_{AB} = \frac{dE}{dQ} \leftarrow$

I HVAWA THEAT POWATR

Power [Watts]: the rate at which energy is transferred

Power in an Element

Pelen = Velen · Ielen

Power in a Resistor

Power [Wath] = VR. IR Rvest - VR To= V P Power = VR · VR = R Vp=IRR Power = IR·R·IR = IR·R. "dissipate" pour aluar

How to measure Voltage?

How to measure Current?

How to measure Resistance?

Measurement Circuit

Ohm's Law

 $V_R = I_R R$ $R = \frac{V_R}{I_R}$

Demo!