EECS 16A

Spring 2023 - Profs. Muller \& Waller
Resistors \& Resistive Touchscreen

Admin

Module 1 and midterm are complete!

Recap
*Power [Watts]: the rate at which energy is transferred large $\downarrow_{\text {small }}$

$$
\underline{P}=\underline{I} \underline{V}
$$

Power is dissipated in a resistor as heat Supplies provide power to the circuit

$$
\stackrel{c}{P=V \cdot I} \uparrow
$$

Tool For Today's Lecture: The Voltage Divider
(1) the Voltage divider

(2) KVL/KCL
(3) Ohm's Law

$$
\frac{\sqrt{V_{S}\left(\frac{\underline{R}_{2}^{\prime}}{\underline{R}_{1}+R_{2}}\right)}}{\sim}
$$

Resistive Touch Screen

$$
\text { conductance }=\frac{1}{\text { Resistance }}
$$

want $\downarrow R \uparrow C$

Resistive Touch Screen

https://doi.org/10.1038/s41598-019-47777-2

Resistive Touch Screen

Bottom Layer: Resistive Layer

Resistance, Resistivity, Conductivity - Properties of Materials

$\frac{L}{A}$: geometric parameters
\rightarrow properties of wire/elem (R)
Wide wires \rightarrow low R
longer wires \rightarrow more E is lost

Resistivity (ρ) [$\Omega-\mathrm{cm}]$
\rightarrow property of the material
Conductivity $(\sigma)[\Omega-\mathrm{cm}]^{-1}$

$$
\sigma=\frac{1}{\rho}
$$

- property of material

Resistive Touch Screen

Problem: Find the location of touch

Go from mechanical to electrical quantity

Want to measure $\frac{\text { touch }}{L}$

Couch is unknown

Resistive Touch Screen - First model
Voltage Divider

Resistive Touch Screen - More realistic model

Resistive Touch Screen - Most realistic model

An Interesting Circuit *
What are U_{2} ? U_{3} ?

