EECS 16A Spring 2023 - Profs. Muller & Waller 2D Resistive Touchscreens

TUR BHH

III M

Toolbox

 ✓ KVL: Voltage drops around a loop sum to 0
✓ KCL: All currents coming out of a node sum to 0
✓ V = IR

 $\checkmark P = IV$ $R = \rho L/A$

Recap: Resistive Touch Screen – More realistic model

An Interesting Circuit

$$* U_2 = U_3$$

Let's add one more resistor – what is i_3 ?

Let's add one more resistor – *equivalent* circuit

an open circuit also has i=0 functionally these circuits are equivalent

Who's willing to be R3?

2D Touch Screen

Top Plate Circuit Model

Bottom Plate Model

Touchscreen Readout – More realistic model

Vertical Measurement y-touch position $V_{2} = V_{2}$

Horizontal Measurement x-touch position $=V_{S}$

Vs = Xmax

★Two circuits are equivalent if they have the same IV relationship

(=0

-, (= 0

Equivalence allows circuit simplification

Two circuits are equivalent if they have the same IV relationship

