EECS 16B Designing Information Devices and Systems II
 Fall 2021 Discussion Worksheet Discussion 1A

For this discussion, Note 1 is helpful for background in transistors and RC circuits.

1. NAND Circuit

Let us consider a NAND logic gate. This circuit implements the boolean function $(A \cdot B)$. The \cdot stands for the AND operation, and the stands for NOT; combining them, we get NAND!

Figure 1: NAND gate transistor-level implementation.
$V_{t n}$ and $V_{t p}$ are the threshold voltages for the NMOS and PMOS transistors, respectively. Assume that $V_{D D}>V_{t n}$ and $\left|V_{t p}\right|>0$.
(a) Label the gate, source, and drain nodes for the NMOS and PMOS transistors above.
(b) If $V_{A}=V_{D D}$ and $V_{B}=V_{D D}$, which transistors act like open switches? Which transistors act like closed switches? What is $V_{\text {out }}$?
(c) If $V_{A}=0 V$ and $V_{B}=V_{D D}$, what is $V_{\text {out }}$?
(d) If $V_{A}=V_{D D}$ and $V_{B}=0 V$, what is $V_{\text {out }}$?
(e) If $V_{A}=0 V$ and $V_{B}=0 V$, what is $V_{\text {out }}$?
(f) Write out the truth table for this circuit.

V_{A}	V_{B}	$V_{\text {out }}$
0	0	
0	$V_{D D}$	
$V_{D D}$	0	
$V_{D D}$	$V_{D D}$	

2. RC Circuits - Part I

In this problem, we will find the voltage across a capacitor over time in an RC circuit. In this part, we set up our problem by first defining four functions over time: $I(t)$ is the current at time $t, V(t)$ is the voltage across the circuit at time $t, V_{R}(t)$ is the voltage across the resistor at time t, and $V_{C}(t)$ is the voltage across the capacitor at time t.
Recall from 16A that the voltage across a resistor is defined as $V_{R}=R I_{R}$ where I_{R} is the current across the resistor. Also, recall that the voltage across a capacitor is defined as $V_{C}=\frac{Q}{C}$ where Q is the charge across the capacitor.

Figure 2: Example Circuit
(a) First, find an equation that relates the current across the capacitor $I(t)$ with the voltage across the capacitor $V_{C}(t)$.
(b) Write a system of equations that relates the functions $I(t), V_{C}(t)$, and $V(t)$.
(c) So far, we have two relations between $\mathrm{I}(\mathrm{t})$ and $V_{C}(t)$. To solve this system of equations, we can remove
$I(t)$ from the equation using what we found in part (a). Rewrite the previous equation in part (b) in the form of a differential equation.

Contributors:

- Kumar Krishna Agrawal.
- Lev Tauz.
- Varun Mishra.
- Regina Eckert.

