EECS 16B Designing Information Devices and Systems II
 Fall 2021 Discussion Worksheet

The following notes are useful for this discussion: Sections 2,3 from Note 3 and Section 1 in Note 4.

1. Differential Equations with Complex Eigenvalues

Suppose we have the pair of differential equations below:

$$
\begin{align*}
& \frac{\mathrm{d} z_{1}(t)}{\mathrm{d} t}=\lambda z_{1}(t) \tag{1}\\
& \frac{\mathrm{d} z_{2}(t)}{\mathrm{d} t}=\bar{\lambda} z_{2}(t) \tag{2}
\end{align*}
$$

with initial conditions $z_{1}(0)=c_{0}$ and $z_{2}(0)=\overline{c_{0}}$. Note, λ and c_{0} are complex numbers and $\bar{\lambda}$ and $\overline{c_{0}}$ are their complex conjugates.
(a) First, assume that $\lambda=j$ in the equations for $z_{1}(t)$ and $z_{2}(t)$ above. Solve for $z_{1}(t)$ and $z_{2}(t)$. Are the solutions complex conjugates?
(b) Suppose now that we have the following different variables related to the original ones:

$$
\begin{align*}
& y_{1}(t)=a z_{1}(t)+\bar{a} z_{2}(t) \tag{3}\\
& y_{2}(t)=b z_{1}(t)+\bar{b} z_{2}(t) \tag{4}
\end{align*}
$$

where a and b are complex numbers and \bar{a} and \bar{b} are their complex conjugates. These numbers can be written in terms of their real and imaginary components:

$$
\begin{array}{cc}
a=a_{r}+j a_{i}, & \bar{a}=a_{r}-j a_{i} \\
b=b_{r}+j b_{i}, & \bar{b}=b_{r}-j b_{i} \tag{6}
\end{array}
$$

where $a_{r}, a_{i}, b_{r}, b_{i}$ are all real numbers. For all following subparts, assume that $\lambda=j$ unless specified.

How do the initial conditions for $\vec{z}(t)$ translate into the initial conditions for $\vec{y}(t)$? Are these purely real, purely imaginary, or complex numbers?
(c) We noticed earlier that $z_{1}(t)$ and $z_{2}(t)$ are complex conjugates of each other. What does this say about $y_{1}(t)$ and $y_{2}(t)$? (Are they purely real, purely imaginary, or complex?)
(d) Write out the change of variables in matrix-vector form $\vec{y}=V \vec{z}$.
(e) (Practice): Find an expression for the determinant of V. Further, simplify $a \bar{b}+\bar{a} b, a \bar{a}$ where a, b are complex numbers..
(f) Write out the system of differential equations for $\frac{\mathrm{d}}{\mathrm{d} t} y_{i}(t)$ and $y_{i}(t)$.
(g) (Practice) Repeat the problem for general complex λ, i.e find solution for $\vec{z}(t)$ and $\vec{y}(t)$, as well as the system of differential equations governing $\vec{y}(t)$.
(h) Above, we were already given the system in nice decoupled coordinates \vec{z}. In general, problems will present in the more coupled form of \vec{y} above. We know how to discover nice coordinates for ourselves. Find the eigenvalues λ_{1}, λ_{2} for the differential equation matrix for $\vec{y}(t)$ above. Verify that the eigenvalues are $(\mathrm{j},-\mathrm{j})$.
(i) (Practice): Find the associated eigenspaces for these eigenvalues.
(j) (Practice): Change variables into the eigenbasis to re-express the differential equations in terms of new variables $y_{\lambda_{1}}(t)$ and $y_{\lambda_{2}}(t)$. (The variables should be in eigenbasis aligned coordinates.)
(k) (Practice): Solve the differential equation for $y_{\lambda_{i}}(t)$ in the eigenbasis.
(l) (Practice): Convert your solution back to $\vec{y}(t)$ coordinate and find $\vec{y}(t)$

2. Introduction to Inductors

An inductor is a circuit element analogous to a capacitor; its voltage is proportional to the derivative of the current across it. That is:

$$
\begin{equation*}
V_{L}(t)=L \frac{\mathrm{~d} I_{L}(t)}{\mathrm{d} t} \tag{7}
\end{equation*}
$$

When first studying capacitors, we analyzed a circuit where a current source was directly attached to a capacitor. In Figure 1, we form the counterpart circuit for an inductor:

Figure 1: Inductor in series with a voltage source.
(a) What is the current through an inductor as a function of time? If the inductance is $L=3 \mathrm{H}$, what is the current at $t=6 \mathrm{~s}$? Assume that the voltage source turns from 0 V to 5 V at time $t=0 \mathrm{~s}$, and there's no current flowing in the circuit before the voltage source turns on i.e $I_{L}(0)=0 \mathrm{~A}$.
(b) Now, we add some resistance in series with the inductor, as in Figure 2.

Figure 2: Inductor in series with a voltage source.

Solve for the current $I_{L}(t)$ and voltage $V_{L}(t)$ in the circuit over time, in terms of R, L, V_{S}, t. Note that $I_{L}(0)=0 \mathrm{~A}$.
(c) (Practice): Suppose $R=500 \Omega, L=1 \mathrm{mH}, V_{S}=5 \mathrm{~V}$. Plot the current through and voltage across the inductor $\left(I_{L}(t), V_{L}(t)\right)$, as these quantities evolve over time.

Contributors:

- Neelesh Ramachandran.
- Anant Sahai.
- Regina Eckert.
- Kuan-Yun Lee.
- Kumar Krishna Agrawal.

