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EECS 16B Designing Information Devices and Systems II
Fall 2021 Discussion Worksheet Discussion 4B
The following notes are useful for this discussion: Note 5

1. Phasor Analysis

Any sinusoidal time-varying function x(t), representing a voltage or a current, can be expressed in the form

x(t) = X̃ejωt + X̃e−jωt, (1)

where X̃ is a time-independent (possibly) complex quantity called the phasor representation of x(t) (recall
that z denotes the complex conjugate of z. The complex conjugate of a complex number z = a + jb is
z = a− jb). Note that:

(a) X̃ and X̃ are complex conjugates of each other.

(b) ejωt and e−jωt are complex conjugates of each other.

(c) X̃ ejωt and X̃ e−jωt are also complex conjugates of each other.

Note: We define the phasor corresponding to x(t) as the coefficient of ejωt in eq. (1). Other resources (such
as some past iterations of this class) define it slightly differently; the definitions differ by a factor of 1

2 . Some
reasons for competing definitions are discussed in Note 5. Although the definitions in general lead to the
same answers, be careful to use our class’ definition and not get tripped up. For example, if we ask about
the magnitude of the phasor, you wouldn’t want to be off by a constant!

The phasor analysis method consists of five steps. The steps below are phrased in terms of any general
circuit, but our goal is to apply these steps to the circuit we’re given. Specifically, consider the RC circuit in
fig. 1.

The voltage source is given by the sinusoid

vS(t) = 12 sin

(
ωt− π

4

)
, (2)

with ω = 1× 103 rad
s , R =

√
3 kΩ, and C = 1 µF.
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Figure 1
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We seek to obtain a solution for i(t) with the sinusoidal voltage source1 vS(t).

(a) Step 1: Write sources as exponentials: X̃ejωt + X̃e−jωt.
All voltages and currents with known sinusoidal functions should be expressed in the standard expo-
nential format. Convert vS(t) into a exponential and write down its phasor representation ṼS .
Note that vS(t) is given in terms of a sine wave, not a cosine wave.

(b) Step 2: Transform circuits to phasor domain. The voltage source vS(t) is represented by its phasor
ṼS . Similarly, vR(t) has phasor ṼR, and vC(t) has phasor ṼC .
The current i(t) is related to its phasor counterpart Ĩ by

i(t) = Ĩejωt + Ĩe−jωt. (3)

We redraw the circuit in phasor domain as in fig. 2. Recall that the impedances of the resistor, ZR(jω),
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Ĩ

ZC(jω)

ṼR
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Figure 2: Circuit in “phasor domain”

and capacitor, ZC(jω), are as given below. We sometimes also refer to this as the "phasor representa-
tion" of R and C.

ZR(jω) = R (4)

1The voltage source symbol here has a squiggly, not +/− . This is the symbol denoting a time-dependent, sinusoidal source;
we have previously had input voltages dependent on time but in a piecewise-constant way (turns on at some time t). These do not
have the mini-sine inside the source symbol.
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ZC(jω) =
1

jωC
(5)

Using the numbers given in the problem statement (ω = 1× 103 rad
s , R =

√
3 kΩ, and C = 1 µF),

compute the numerical values of these impedances.

(c) [Practice] As an intermediate step to use in the next subpart, show that the fact that the first equation
holds for all t implies the second equation:

vS(t) = vR(t) + vC(t) (6)

ṼS = ṼR + ṼC (7)

(d) Step 3: Cast the branch and element equations in the phasor domain.
The previous subpart gave us a concrete relation we can use in the phasor domain to relate the voltages
of the circuit elements. Specifically, we know that ṼS = ṼR + ṼC .
Now, we must substitute in the voltage phasors corresponding to these terms, using the element
impedances given in Step 2. At this point, feel free to leave the terms symbolic; in the next part, we
will substitute in numbers.
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(e) Step 4: Solve for unknown variables
Solve the equation you derived in Step 3 for Ĩ and ṼC . What is the polar form of Ĩ and ṼC? The
polar form is given by Aejθ, where A is a positive real number.
Hints:

•
√
3
2 −

j
2 = e−j

π
6

(f) Step 5: Transform solutions back to time domain
To return to time domain, we apply the relation between a sinusoidal function and its phasor counter-
part. What is i(t) and vC(t)? What is the phase difference between i(t) and vC(t)?

(g) Now, suppose that instead of wherever we analyzed the phasor as X̃ (the coefficient associated with
the ejωt term), we had instead selected to work with X̃ , or we solved using both X̃ and X̃ . How would
our answer or problem-solving procedure have changed?
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2. Inductor Impedance

Given the voltage-current relationship of an inductor v(t) = Ldi(t)
dt , we want to show that its complex

impedance is ZL(jω) = jωL. We will perform this analysis in steps.

A sample inductor circuit is in fig. 3.

i(t)

L

−

+

vL(t)

Figure 3: A simple inductor circuit.

(a) Suppose that the input current source in fig. 3 has value i(t) = I0e
st, where I0 is some (not necessarily

real) constant. What is the corresponding s-phasor for the current?

(b) Now, using the governing voltage-current equation for an inductor, derive the time-domain inductor
voltage using the current expression and solve for the corresponding voltage s-phasor.

(c) Using the voltage and current s-phasors, solve for the s-impedance of the inductor ZL(s). (This is
the ratio between these phasor quantities).

(d) Now, suppose that our current source value was instead i(t) = I0 cos(ωt+ φ), where ω is the fre-
quency of the cosine wave and φ is the phase-offset. φ = 0 corresponds to the standard cosine centered
at t = 0.
Using Euler’s formula, represent i(t) as the sum of two complex exponentials. Using this, Find
the new phasor Ĩ associated with the complex exponential ejωt.
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(e) Same as before, use i(t) to derive v(t) and find the new phasor Ṽ associated with the complex
exponential ejωt.

(f) Once again, using the voltage and current phasors, solve for the impedance of the inductor ZL(s).
Is this the same quantity that we found in the earlier subpart, as expected?

Now, let’s see how we could have used the first result (for a single complex exponential) and taken
a shortcut for the generic sinusoid using superposition. By pattern-matching the expansion of i(t) =

I0
1
2

(
ej(ωt+φ) + e−j(ωt+φ)

)
to the single s-exponential at the very start, we find that there are 2 com-

ponents:

i. Component 1: i1(t) =
(
I0
2 ejφ

)
ejωt

ii. Component 2: i2(t) =
(
I0
2 e−jφ

)
e−jωt

(g) Now, evaluate your expression for ZL(s) (from the single exponential case) at s = jω, and s =
−jω. What do you notice?

(h) Using the current components given above, solve for the voltage phasors Ṽ1 and Ṽ2 as the product
of the associated current phasors Ĩ1 and Ĩ2, and the corresponding impedances. What do you
notice about the current phasors? What do you notice about the voltage phasors? How can we explain
the relationships between these results?
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