EECS 16B Designing Information Devices and Systems II Fall 2021 Discussion Worksheet Discussion 6A

The following notes are useful for this discussion: Note 9, Discussion 2B, Homework 04.

1. Translating System of Differential Equations from Continuous Time to Discrete Time

Working through this question will help you better understand differential equations with inputs, and the sampling of a continuous-time system of differential equations into a discrete-time view. These concepts are important for control, since it is often easier to think about doing what we want in discrete-time. This question should initially feel similar to dis02B, and in later subparts, we extend our analysis to the case of a vector differential equation.
(a) Consider the scalar system below:

$$
\begin{equation*}
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=\lambda x(t)+u(t) \tag{1}
\end{equation*}
$$

Further suppose that our input $u(t)$ of interest is piecewise constant over durations of width Δ. This is the same case we considered in dis02B. In other words:

$$
\begin{equation*}
u(t)=u(i \Delta)=u_{d}[i] \text { if } t \in(i \Delta,(i+1) \Delta] \tag{2}
\end{equation*}
$$

Similarly, for $x(t)$,

$$
\begin{equation*}
x(t)=x(i \Delta)=x_{d}[i] \tag{3}
\end{equation*}
$$

Let's revisit the solution for eq. (1), when we're given the initial conditions at t_{0}, i.e we know the value of $x\left(t_{0}\right)$ and want to solve for $x(t)$ at any time $t \geq t_{0}$:

$$
\begin{equation*}
x(t)=\mathrm{e}^{\lambda \Delta(t)} x\left(t_{0}\right)+\int_{t_{0}}^{t} u(\theta) e^{\lambda(t-\theta)} d \theta \tag{4}
\end{equation*}
$$

where $\Delta(t)=t-t_{0}$. Given that we start at $t=i \Delta$, where $x(t)=x_{d}[i]$, and satisfy eq. (1) where do we end up at $x_{d}[i+1]$?
(b) Suppose we now have a continuous-time system of differential equations, that forms a vector differential equation. We express this with an input in vector form:

$$
\begin{equation*}
\frac{\mathrm{d} \vec{x}(t)}{\mathrm{d} t}=A \vec{x}(t)+\vec{b} u(t) \tag{5}
\end{equation*}
$$

where $\vec{x}(t)$ is n-dimensional. Suppose further that the matrix A has distinct and non-zero eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. with corresponding eigenvectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$. We collect the eigenvectors together and form the matrix $V=\left[\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right]$. (Hint: What's the significance of this information?)
If we apply a piecewise constant control input $u_{d}[i]$ as in (2), and sample the system $\vec{x}(t)$ at time intervals $t=i \Delta$, what are the corresponding A_{d} and \vec{b}_{d} in:

$$
\begin{equation*}
\vec{x}_{d}[i+1]=A_{d} \vec{x}_{d}[i]+\vec{b}_{d} u_{d}[i] \tag{6}
\end{equation*}
$$

(Hint : Define terms $\Lambda_{e}^{\Delta}=\left[\begin{array}{cccc}e^{\lambda_{1} \Delta} & 0 & \ldots & 0 \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \ldots & \ldots & e^{\lambda_{n} \Delta}\end{array}\right], \Lambda^{-1}=\left[\begin{array}{cccc}\frac{1}{\lambda_{1}} & 0 & \ldots & 0 \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \ldots & \ldots & \frac{1}{\lambda_{n}}\end{array}\right]$,
(c) In the previous part, we had a matrix A which was diagonalizable using a eigenbasis. You might recall from Homework 4, that for critically damped systems we had $A=\left[\begin{array}{cc}\lambda & \beta \\ 0 & \lambda\end{array}\right]$ (a non-diagonalizable matrix). Assuming the input $u(t)=0$, consider the system of differential equations given by

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
x_{1}(t) \tag{7}\\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{ll}
\lambda & \beta \\
0 & \lambda
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

Assuming that we know the solution at $t=i \Delta$, where $x(i \Delta)=x_{d}[i]$, find A_{d} such that we have
a solution in the discrete time system for eq. (7)

$$
\begin{equation*}
\vec{x}_{d}[i+1]=A_{d} \vec{x}_{d}[i] \tag{8}
\end{equation*}
$$

(Hint: From 1(a) we know for $t \geq t_{0}$

$$
\begin{equation*}
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=\lambda x(t)+u(t) \tag{9}
\end{equation*}
$$

with initial conditions $x(t)=x\left(t_{0}\right)$ for $t=t_{0}$, has solution of the form $)$

$$
\begin{equation*}
x(t)=e^{\lambda\left(t-t_{0}\right)} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{\lambda(t-\theta)} u(\theta) d \theta \tag{10}
\end{equation*}
$$

(d) (Practice) In this subpart we generalize the above procedure, by making $u(t) \neq 0$. Consider the following system of differential equations:

$$
\begin{equation*}
\frac{\mathrm{d} \vec{x}(t)}{\mathrm{d} t}=A \vec{x}(t)+\vec{b} u(t) \tag{11}
\end{equation*}
$$

where $A=\left[\begin{array}{cc}\lambda & \beta \\ 0 & \lambda\end{array}\right]$, and $b=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$. Given $\vec{x}_{d}[i]$, find A_{d} and \vec{b}_{d} such that

$$
\begin{equation*}
\vec{x}_{d}[i+1]=A_{d} \vec{x}_{d}[i]+\vec{b}_{d} u_{d}[i] \tag{12}
\end{equation*}
$$

(e) Consider the discrete-time system

$$
\begin{equation*}
\vec{x}_{d}[i+1]=A_{d} \vec{x}_{d}[i]+\vec{b}_{d} u_{d}[i] \tag{13}
\end{equation*}
$$

Suppose that $\vec{x}_{d}[0]=\vec{x}_{0}$. Unroll the implicit recursion to write $\vec{x}_{d}[i+1]$ as a sum that involves \vec{x}_{0} and the $u_{d}[j]$ for $j=0,1, \ldots, i$. You don't need to worry about what A_{d} and \vec{b}_{d} actually are in terms of the original parameters.
(Hint: If we have a scalar difference equation, how would you solve the recurrence?)

2. Continuous-time System Responses

We have a differential equation $\frac{\mathrm{d} \vec{x}(t)}{\mathrm{d} t}=A \vec{x}(t)$, where A is a real matrix and has eigenvalues λ. For systems ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) it is a scalar differential equation, whereas for D, E which have more than 1 eigenvalue, this equation is a vector differential equation. For each set of λ values plotted on the real-imaginary complex plane, sketch $x_{1}(t)$ with an initial condition of $x_{1}(0)=1$. Do we have sufficient information to exactly plot $x_{1}(t)$ for each vector differential equation? If not, sketch a couple of possible solutions.. In the scalar case, $x_{1}(t) \equiv x(t)$.

Contributors:

- Neelesh Ramachandran.
- Druv Pai.
- Anant Sahai.
- Nikhil Shinde.
- Sanjit Batra.
- Aditya Arun.
- Kuan-Yun Lee.
- Kumar Krishna Agrawal.

