EECS 16B Designing Information Devices and Systems II Fall $2021 \quad$ Discussion Worksheet Discussion 6B

The following notes are useful for this discussion: Note 9, Note 10

1. System Identification by Means of Least Squares

Working through this question will help you understand better how we can use experimental data taken from a (presumably) linear system to learn a discrete-time linear model for it using the least-squares techniques you learned in 16A. You will later do this in lab for your robot car.

As you were told in 16A, least-squares and its variants are not just the basic workhorses of machine learning in practice, they play a conceptually central place in our understanding of machine learning well beyond least-squares.

Throughout this question, you should consider measurements to have been taken from one long trace through time.
(a) Consider the scalar discrete-time system

$$
\begin{equation*}
x[i+1]=a x[i]+b u[i]+w[i] \tag{1}
\end{equation*}
$$

Where the scalar state at time i is $x[i]$, the input applied at time i is $u[i]$ and $w[i]$ represents some external disturbance that also participated at time i (which we cannot predict or control, it's a purely random disturbance).
Assume that you have measurements for the states $x[i]$ from $i=0$ to m and also measurements for the controls $u[i]$ from $i=0$ to $m-1$.
Set up a least-squares problem that you can solve to get an estimate of the unknown system parameters a and b.
(b) What if there were now two distinct scalar inputs to a scalar system

$$
\begin{equation*}
x[i+1]=a x[i]+b_{1} u_{1}[i]+b_{2} u_{2}[i]+w[i] \tag{2}
\end{equation*}
$$

and that we have measurements as before, but now also for both of the control inputs.
Set up a least-squares problem that you can solve to get an estimate of the unknown system parameters a, b_{1}, b_{2}.
(c) What could go wrong in the previous case? For what kind of inputs would make least-squares fail to give you the parameters you want?
(d) Now consider the two dimensional state case with a single input.

$$
\vec{x}[i+1]=\left[\begin{array}{l}
x_{1}[i+1] \tag{3}\\
x_{2}[i+1]
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \vec{x}[i]+\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] u[i]+\vec{w}[i]
$$

How can we treat this like two parallel problems to set this up using least-squares to get estimates for the unknown parameters $a_{11}, a_{12}, a_{21}, a_{22}, b_{1}, b_{2}$? Write the least squares solution in terms of your known matrices and vectors (including based on the labels you gave to various matrices/vectors in previous parts).
Hint: What work/computation can we reuse across the two problems?

2. Stability Examples and Counterexamples

(a) Consider the circuit below with $R=1 \Omega, C=0.5 \mathrm{~F}$, and $u(t)$ is some waveform bounded between -1 and 1 (for example $\cos (t)$). Furthermore assume that $v_{C}(0)=0 \mathrm{~V}$ (that the capacitor is initially discharged).

This circuit can be modeled by the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} v_{C}(t)}{\mathrm{d} t}=-2 v_{C}(t)+2 u(t) \tag{4}
\end{equation*}
$$

Show that the differential equation is always stable (that is, as long as the input $u(t)$ is bounded, $v_{C}(t)$ also stays bounded). Consider what this means in the physical circuit.
(b) Consider the discrete system

$$
\begin{equation*}
x[i+1]=2 x[i]+u[i] \tag{5}
\end{equation*}
$$

with $x[0]=0$.

Is the system stable or unstable?

If unstable, find a bounded input sequence $u[i]$ that causes the system to "blow up". Is there still a (non-trivial) bounded input sequence that does not cause the system to "blow up"?
(c) [Practice, but challenging:] Now, suppose that in the circuit of part (a) we replaced the resistor with an inductor, $L=1 \mathrm{mH}$. Repeat part (a) for the new circuit (with an inductor).
Hint: You might find it useful to revisit the process of generating the state-space equations for $v_{C}(t)$ and $i_{L}(t)$ as done in Note 4 for the LC Tank. The difference is that here, we have an input voltage.

Contributors:

- Neelesh Ramachandran.
- Anant Sahai.
- Regina Eckert.
- Kareem Ahmad.
- Sidney Buchbinder.

