EECS 16B Designing Information Devices and Systems II Fall 2021 Discussion Worksheet Discussion 8B

The following notes are useful for this discussion: Note 12.

1. Gram-Schmidt Algorithm

Let's apply Gram-Schmidt orthonormalization to a list of three linearly independent vectors $[\vec{s}_1, \vec{s}_2, \vec{s}_3]$.

(a) Find unit vector $\vec{q_1}$ such that $\text{Span}(\{\vec{q_1}\}) = \text{Span}(\{\vec{s_1}\})$.

(b) Given $\vec{q_1}$ from the previous step, find unit vector $\vec{q_2}$ such that $\operatorname{Span}(\{\vec{q_1}, \vec{q_2}\}) = \operatorname{Span}(\{\vec{s_1}, \vec{s_2}\})$ and $\vec{q_2}$ is orthogonal to $\vec{q_1}$.

(c) Suppose we want to show that $\text{Span}(\{\vec{q_1}, \vec{q_2}\}) = \text{Span}(\{\vec{s_1}, \vec{s_2}\})$. What does this mean mathematically? *Hint: you cannot use the word span, but must capture the same concept in your translation of the statement we want to show.*

- (d) What would happen if $\{\vec{s}_1, \vec{s}_2, \vec{s}_3\}$ were *not* linearly independent, but rather \vec{s}_1 were a multiple of \vec{s}_2 ?
- (e) Now given $\vec{q_1}$ and $\vec{q_2}$ in parts (a) and (b), find $\vec{q_3}$ such that $\text{Span}(\{\vec{q_1}, \vec{q_2}, \vec{q_3}\}) = \text{Span}(\{\vec{s_1}, \vec{s_2}, \vec{s_3}\})$, and $\vec{q_3}$ is orthogonal to both $\vec{q_1}$ and $\vec{q_2}$, and finally $\|\vec{q_3}\| = 1$.

(f) **[Practice] Confirm that** $\text{Span}(\{\vec{q_1}, \vec{q_2}, \vec{q_3}\}) = \text{Span}(\{\vec{s_1}, \vec{s_2}, \vec{s_3}\}).$

2. Orthonormal Matrices and Projections

An orthonormal matrix, A, is a matrix whose columns, \vec{a}_i , are:

- Orthogonal (ie. $\langle \vec{a}_i, \vec{a}_j \rangle = \vec{a}_j^\top \vec{a}_i = 0$ when $i \neq j$)
- Normalized (ie. vectors with length equal to 1, $\|\vec{a}_i\| = 1$). This implies that $\|\vec{a}_i\|_2 = \langle \vec{a}_i, \vec{a}_i \rangle = \vec{a}_i^\top \vec{a}_i = 1$.
- (a) When $A \in \mathbb{R}^{n \times m}$ and $n \ge m$ (i.e. for tall matrices), show that if the matrix is orthonormal, then $A^{\top}A = I_{m \times m}$.

(b) Again, suppose $A \in \mathbb{R}^{n \times m}$ where $n \ge m$ is an orthonormal matrix. Show that the projection of \vec{y} onto the subspace spanned by the columns of A is now $AA^{\top}\vec{y}$.

(c) Show if $A \in \mathbb{R}^{n \times n}$ is an orthonormal matrix then the columns, \vec{a}_i , form a basis for \mathbb{R}^N . *Hint: can you use the result of the previous subpart?*

Contributors:

- Regina Eckert.
- Druv Pai.
- Neelesh Ramachandran.