EECS 16B Designing Information Devices and Systems II Fall 2021 Discussion Worksheet Discussion 9A

The following notes are useful for this discussion: Note 12, Note 14.

1. Towards Upper-Triangulation By An Orthonormal Basis

Previously in this course, we have seen the value of changing our coordinates to be eigenbasis-aligned, because we can then view the system as a set of parallel scalar systems. If we have a diagonalization, then these scalar equations are fully uncoupled, and can therefore be treated completely separately. But even when we cannot diagonalize, we can upper-triangularize in a way that allows us to solve the equations one at a time, from the "bottom up".

In this problem, to better understand the steps involved, we will use the following concrete example:

$$
M=S_{[3 \times 3]}=\left[\begin{array}{ccc}
\frac{5}{12} & \frac{5}{12} & \frac{1}{6} \tag{1}\\
\frac{5}{12} & \frac{5}{12} & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{6} & \frac{2}{3}
\end{array}\right]
$$

and figure out the general case by abstracting variables. Note that there is a datahub link to a jupyter notebook on the website, which will allow you to perform the numerical calculations quickly to connect the symbolic analysis to an example, but without being time-consuming in the process. ${ }^{1}$
(a) Consider a non-zero vector $\vec{u}_{0} \in \mathbb{R}^{n}$. Can you think of a way to extend it to a set of basis vectors for \mathbb{R}^{n} ? In other words, find $\vec{u}_{1}, \cdots, \vec{u}_{n-1}$, such that $\operatorname{span}\left(\vec{u}_{0}, \vec{u}_{1}, \cdots, \vec{u}_{n-1}\right)=\mathbb{R}^{n}$. To make things concrete, consider $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$. Can you get an orthonormal basis where the first vector is a multiple of this vector?
Hint: what was the last discussion all about? Also, the given vector isn't normalized yet!

[^0](b) Now consider a real eigenvalue λ_{1}, and the corresponding (normalized) eigenvector $\vec{v}_{1} \in \mathbb{R}^{n}$ of a square matrix $M \in \mathbb{R}^{n \times n}$. From the previous part, we know that we can extend \vec{v}_{1} to an orthonormal basis of \mathbb{R}^{n}. We will denote the basis by
\[

U=\left[$$
\begin{array}{cccc}
\mid & \mid & \cdots & \mid \\
\vec{u}_{1} & \overrightarrow{u_{2}} & \cdots & \vec{u}_{n} \\
\mid & \mid & \cdots & \mid
\end{array}
$$\right]
\]

where $\vec{u}_{1}=\vec{v}_{1}$ (note that this eigenvector is already normalized).
Our goal is to look at what the matrix M looks like in the coordinate system defined by the basis U. Compute $U^{\top} M U$ by writing $U=\left[\begin{array}{ll}\vec{v}_{1} & R\end{array}\right]$, where $R \triangleq\left[\begin{array}{cccc}\mid & \mid & \cdots & \mid \\ \vec{r}_{1} & \vec{r}_{2} & \cdots & \vec{r}_{n-1} \\ \mid & \mid & \cdots & \mid\end{array}\right] \cdot\left(\right.$ Note $\left.: \vec{r}_{i}=\vec{u}_{i+1}\right)$
(c) Verify that $U^{-1}=U^{\top}$, where U is the matrix we get from Gram-Schmidt process.
(d) Look at the first column and the first row of $U^{\top} M U$ and show that:

$$
M=U\left[\begin{array}{cc}
\lambda_{1} & \vec{a}^{\top} \tag{2}\\
\overrightarrow{0} & Q
\end{array}\right] U^{\top}
$$

where $Q=R^{\top} M R$. Here, \vec{a} is a vector related to M, R, and \vec{v}_{1} (we will show the relation!).
(e) Now, we can recurse on Q to get:

$$
Q=\left[\begin{array}{ll}
\vec{v}_{2} & Y
\end{array}\right]\left[\begin{array}{cc}
\lambda_{2} & \vec{b}^{\top} \tag{3}\\
\overrightarrow{0} & P
\end{array}\right]\left[\begin{array}{ll}
\vec{v}_{2} & Y
\end{array}\right]^{\top}
$$

where we have taken $\vec{v}_{2} \in \mathbb{R}^{n-1}$, a normalized eigenvector of Q, associated with eigenvalue λ_{2}. Again \vec{v}_{2} is extended into an orthonormal basis to form $\left[\begin{array}{ll}\vec{v}_{2} & Y\end{array}\right]$.
Plug this form of Q into M above, to show that:

$$
M=\left[\begin{array}{lll}
\vec{v}_{1} & R \vec{v}_{2} & R Y
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & \breve{a}_{1} & \breve{\vec{a}}_{\text {rest }}^{\top} \tag{4}\\
0 & \lambda_{2} & \vec{b}^{\top} \\
\overrightarrow{0} & \overrightarrow{0} & P
\end{array}\right]\left[\begin{array}{ccc}
\vec{v}_{1} & R \vec{v}_{2} & R Y
\end{array}\right]^{\top}
$$

where we define $\breve{\vec{a}}$ to be the "adjusted" \vec{a} to account for the subsitution of Q; $\breve{a}^{\top}=\vec{a}^{\top}\left[\begin{array}{ll}\vec{v}_{2} & Y\end{array}\right]$.
(f) Show that the matrix $\left[\begin{array}{lll}\vec{v}_{1} & R \vec{v}_{2} & R Y\end{array}\right]$ is still orthonormal.
(g) (Practice) We have shown how to upper triangularize a 3×3 and a 2×2 matrix. How can we generalize this process to any $n \times n$ matrix M ?
(h) (Practice) Show that the characteristic polynomial of square matrix M is the same as that of the square matrix $U M U^{-1}$ for any invertible U. You should use the key property $\operatorname{det}(A B)=$ $\operatorname{det}(A) \operatorname{det}(B)$ for square matrices.

Contributors:

- Neelesh Ramachandran.
- Yuxun Zhou.
- Edward Wang.
- Anant Sahai.
- Sanjit Batra.
- Pavan Bhargava.
- Kumar Krishna Agrawal.

[^0]: ${ }^{1}$ This particular matrix has an additional special property of symmetry, but we won't be invoking that here.

