EECS 16B Designing Information Devices and Systems II

Fall 2021 Discussion Worksheet Discussion 9B

The following notes are useful for this discussion: Note 14

1. Orthonormality and Least Squares

(a) Let U be an $m \times n$ matrix with orthonormal columns, with $m \geq n$. Compute $U^{\top} U$. How does this change if $m<n$?
(b) Suppose you have a real, square, $n \times n$ orthonormal matrix U (the columns of U are unit norm and mutually orthogonal). You also have real vectors $\vec{x}_{1}, \vec{x}_{2}, \vec{y}_{1}, \vec{y}_{2}$ such that

$$
\begin{aligned}
& \vec{y}_{1}=U \vec{x}_{1} \\
& \vec{y}_{2}=U \vec{x}_{2}
\end{aligned}
$$

Calculate $\left\langle\vec{y}_{1}, \vec{y}_{2}\right\rangle=\vec{y}_{2}^{\top} \vec{y}_{1}=\vec{y}_{1}^{\top} \vec{y}_{2}$ in terms of $\left\langle\vec{x}_{1}, \vec{x}_{2}\right\rangle=\vec{x}_{2}^{\top} \vec{x}_{1}=\vec{x}_{1}^{\top} \vec{x}_{2}$.
(c) Following the previous question, express $\left\|\vec{y}_{1}\right\|_{2}^{2}$ and $\left\|\vec{y}_{2}\right\|_{2}^{2}$ in terms of $\left\|\vec{x}_{1}\right\|_{2}^{2}$ and $\left\|\vec{x}_{2}\right\|_{2}^{2}$.
(d) Suppose you observe data coming from the model $y_{i}=\vec{a}^{\top} \vec{x}_{i}$, and you want to find the linear scaleparameters (each a_{i}). We are trying to learn the model \vec{a}. You have m data points (\vec{x}_{i}, y_{i}), with each $\vec{x}_{i} \in \mathbb{R}^{n}$. Note that \vec{x}_{i} refers to the i-th vector, not the i-th element of a single vector. Each \vec{x}_{i} is a different input vector that you take the inner product of with \vec{a}, giving a scalar y_{i}.
Set up a least squares formulation for estimating \vec{a}, and find the solution to the least squares problem.
(e) Now suppose V is an orthonormal square matrix, and rather than observing $\vec{a}^{\top} \vec{x}$ directly, we actually observe data points that result from our inputs being transformed by V^{\top} as follows:

$$
\begin{equation*}
\overrightarrow{\vec{x}}=V^{\top} \vec{x} \tag{1}
\end{equation*}
$$

That is, our model acts on the modified input data $\overrightarrow{\widetilde{x}}_{i}$, so the data points we collected are now $\left(\vec{x}_{i}, y_{i}\right)$. We must now consider the new model:

$$
\begin{equation*}
y_{i}=\overrightarrow{\vec{a}}^{\top} \overrightarrow{\vec{x}}_{i} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
=\overrightarrow{\vec{a}}^{\top} V^{\top} \vec{x}_{i} \tag{3}
\end{equation*}
$$

Set up a least-squares formulation for $\hat{\vec{a}}$. How is $\hat{\overrightarrow{\vec{a}}}$ related to $\hat{\vec{a}}$?
(f) Now suppose that we have the matrix

$$
\left[\begin{array}{c}
\vec{x}_{1}^{\top} \tag{4}\\
\vec{x}_{2}^{\top} \\
\vdots \\
\vec{x}_{m}^{\top}
\end{array}\right] \triangleq X=U \Sigma V^{\top} .
$$

where U is an $m \times m$ matrix, and V is an $n \times n$ matrix. Here, $\Sigma=\left[\begin{array}{ccccccc}\sigma_{1} & 0 & \ldots & 0 & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \ldots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \sigma_{n} & 0 & \cdots & 0\end{array}\right]$. Here we assume that we have more data points than the dimension of our space (that is, $m>n$). Also, the transformation V in part e) is the same V in this factorized representation.
Set up a least squares formulation for estimating $\overrightarrow{\tilde{a}}$ and find the solution to the least squares. Is there anything interesting going on?
Note: Don't worry about how we would find U, Σ, V^{\top} for now; assume that X has the given form and that U and V are orthonormal.
Hint: Start by substituting the factorized representation of X into the answer of the previous part.

Contributors:

- Neelesh Ramachandran.
- Kuan-Yun Lee.
- Anant Sahai.
- Kumar Krishna Agrawal.

