EECS 16B Designing Information Devices and Systems II
 Fall 2021 Discussion Worksheet Discussion 10B

The following notes are useful for this discussion: Note 15, Note 16

1. Computing the SVD: A "Tall" Matrix Example

Define the matrix

$$
A=\left[\begin{array}{cc}
1 & -1 \tag{1}\\
-2 & 2 \\
2 & -2
\end{array}\right]
$$

(a) In this part, we will find the full SVD of A in steps.
(i) Compute $A^{\top} A$ and find its eigenvalues.
(ii) Find orthonormal eigenvectors \vec{v}_{i} of $A^{\top} A$ (right singular vectors, columns of V).
(iii) Find singular values, $\sigma_{i}=\sqrt{\lambda_{i}}$.
(iv) Find the orthonormal vectors \vec{u}_{i} (and for nonzero σ, you can use \vec{v}_{i}).

Hint: given \vec{v}_{k} corresponding to nonzero σ, we can compute $\vec{u}_{k}=\frac{1}{\sigma_{k}} A \vec{v}_{k}$.
Another hint: How can we extend a basis, and why is that needed here? Note what the Jupyter notebook contains.
(v) Use the previous parts to write the full SVD of A.
(vi) Use the Jupyter notebook to run the code cell that calls numpy.linalg. svd on A. What is the result? Does it match our result above?
(b) Find the rank of A.
(c) Find a basis for the range (or column space) of A.
(d) Find a basis for the null space of A.
(e) We now want to create the SVD of A^{\top}. Rather than repeating all of the steps in the algorithm, feel free to use the jupyter notebook for this subpart (which defines a numpy. linalg. svd command). What are the relationships between the matrices composing A and the matrices composing A^{\top} ?

2. Understanding the SVD

We can compute the SVD for a wide matrix A with dimension $m \times n$ where $n>m$ using $A^{\top} A$ with the method covered in lecture. However, when doing so, you may realize that $A^{\top} A$ is much larger than $A A^{\top}$ for such wide matrices. This makes it more efficient to find the eigenvalues for $A A^{\top}$. In this question, we will explore how to compute the SVD using $A A^{\top}$ instead of $A^{\top} A$.
(a) What are the dimensions of $A A^{\top}$ and $A^{\top} A$?
(b) Given that the SVD of A is $A=U \Sigma V^{\top}$, find a symbolic expression for $A A^{\top}$ in terms of U, Σ, V^{\top}. Simplify where possible!
(c) Using the solution to the previous part, how can we find a U and Σ from $A A^{\top}$? Hint: first, think about matrix dimensions. Next, consider the properties of the SVD, and what each matrix signifies.
Another Hint: you may want to compute for yourself, based on the structure of Σ, what $\Sigma^{\top} \Sigma$ and $\Sigma \Sigma^{\top}$ are.
(d) Now that we have found the singular values σ_{i} and the corresponding vectors \vec{u}_{i} in the matrix U, can you find the corresponding vectors \vec{v}_{i} in V ? Hint: Apply the definition of an eigenvector. What do the \vec{v}_{i} vectors signify with regards to $A^{\top} A$?
(e) Now we have a way to find the vectors \vec{v}_{i} in matrix V ! Use the fact that the vectors \vec{u}_{i}, \vec{u}_{j} are orthonormal to show that \vec{v}_{i}, \vec{j} in V (corresponding to nonzero σ_{i}, σ_{j} and $i, j \leq n$) are orthonormal by direct computation.
(f) [Practice] Given that $A=U \Sigma V^{\top}$, verify that the vectors after the first n vectors in V are in the nullspace of A.
(g) [Practice] Using the previous parts of this question and what you learned from lecture, write out a procedure on how to find the SVD for any matrix.

Contributors:

- Neelesh Ramachandran.
- Druv Pai.
- John Maidens.
- Nikhil Shinde.
- Siddharth Iyer.
- Jane Liang.

