EECS 16B Designing Information Devices and Systems II Fall 2021 Discussion Worksheet Discussion 12A

The following notes are useful for this discussion: Note 19

1. Jacobians and Linear Approximation

Recall that for a scalar-valued function $f(\vec{x}, \vec{y}) : \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}$ with vector-valued arguments, we can linearize the function at $(\vec{x}_{\star}, \vec{y}_{\star})$

$$f(\vec{x}, \vec{y}) \approx f(\vec{x}_{\star}, \vec{y}_{\star}) + (D_{\vec{x}}f)\Big|_{(\vec{x}_{\star}, \vec{y}_{\star})} \cdot (\vec{x} - \vec{x}_{\star}) + (D_{\vec{y}}f)\Big|_{(\vec{x}_{\star}, \vec{y}_{\star})} \cdot (\vec{y} - \vec{y}_{\star}).$$
(1)

where

$$D_{\vec{x}}f = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \dots & \frac{\partial f}{\partial x_n} \end{bmatrix},\tag{2}$$

$$D_{\vec{y}}f = \begin{bmatrix} \frac{\partial f}{\partial y_1} & \dots & \frac{\partial f}{\partial y_k} \end{bmatrix}.$$
 (3)

(a) When the function $\vec{f}(\vec{x}, \vec{y}) : \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}^m$ takes in vectors and outputs a vector (rather than a scalar), we can view each dimension in \vec{f} independently as a separate function f_i , and linearize each of them:

$$\vec{f}(\vec{x},\vec{y}) = \begin{bmatrix} f_1(\vec{x},\vec{y}) \\ f_2(\vec{x},\vec{y}) \\ \vdots \\ f_m(\vec{x},\vec{y}) \end{bmatrix} \approx \begin{bmatrix} f_1(\vec{x}_{\star},\vec{y}_{\star}) + D_{\vec{x}}f_1 \cdot (\vec{x} - \vec{x}_{\star}) + D_{\vec{y}}f_1 \cdot (\vec{y} - \vec{y}_{\star}) \\ f_2(\vec{x}_{\star},\vec{y}_{\star}) + D_{\vec{x}}f_2 \cdot (\vec{x} - \vec{x}_{\star}) + D_{\vec{y}}f_2 \cdot (\vec{y} - \vec{y}_{\star}) \\ \vdots \\ f_m(\vec{x}_{\star},\vec{y}_{\star}) + D_{\vec{x}}f_m \cdot (\vec{x} - \vec{x}_{\star}) + D_{\vec{y}}f_m \cdot (\vec{y} - \vec{y}_{\star}) \end{bmatrix}$$
(4)

We can rewrite this in a clean way with the Jacobian:

$$D_{\vec{x}}\vec{f} = \begin{bmatrix} D_{\vec{x}}f_1\\ D_{\vec{x}}f_2\\ \vdots\\ D_{\vec{x}}f_m \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n}\\ \vdots & \ddots & \vdots\\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix},$$
(5)

and similarly

$$D_{\vec{y}}\vec{f} = \begin{bmatrix} \frac{\partial f_1}{\partial y_1} & \cdots & \frac{\partial f_1}{\partial y_k} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial y_1} & \cdots & \frac{\partial f_m}{\partial y_k} \end{bmatrix}.$$
 (6)

Then, the linearization becomes

$$\vec{f}(\vec{x}, \vec{y}) \approx \vec{f}(\vec{x}_{\star}, \vec{y}_{\star}) + (D_{\vec{x}}\vec{f})\Big|_{(\vec{x}_{\star}, \vec{y}_{\star})} \cdot (\vec{x} - \vec{x}_{\star}) + (D_{\vec{y}}\vec{f})\Big|_{(\vec{x}_{\star}, \vec{y}_{\star})} \cdot (\vec{y} - \vec{y}_{\star}).$$
(7)

Let
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 and $\vec{f}(\vec{x}) = \begin{bmatrix} x_1^2 x_2 \\ x_1 x_2^2 \end{bmatrix}$. Find $D_{\vec{x}} \vec{f}$, applying the definition above.

(b) Evaluate the approximation of \vec{f} using $\vec{x}_{\star} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ at the point $\begin{bmatrix} 2.01 \\ 3.01 \end{bmatrix}$, and compare with $\vec{f} \left(\begin{bmatrix} 2.01 \\ 3.01 \end{bmatrix} \right)$. Recall the definition that $\vec{f}(\vec{x}) = \begin{bmatrix} x_1^2 x_2 \\ x_1 x_2^2 \end{bmatrix}$.

(c) Let \vec{x} and \vec{y} be vectors with 2 rows, and let \vec{w} be another vector with 2 rows. Let $\vec{f}(\vec{x}, \vec{y}) = \vec{x}\vec{y}^{\top}\vec{w}$. Find $D_{\vec{x}}\vec{f}$ and $D_{\vec{y}}\vec{f}$. (d) Continuing the above part, find the linear approximation of \vec{f} near $\vec{x} = \vec{y} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and with $\vec{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

2. Linearizing a Two-state System

We have a two-state nonlinear system defined by the following differential equation:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \beta(t) \\ \gamma(t) \end{bmatrix} = \frac{\mathrm{d}}{\mathrm{d}t} \vec{x}(t) = \begin{bmatrix} -2\beta(t) + \gamma(t) \\ g(\gamma(t)) + u(t) \end{bmatrix} = \vec{f}(\vec{x}(t), u(t))$$
(8)

where $\vec{x}(t) = \begin{bmatrix} \beta(t) \\ \gamma(t) \end{bmatrix}$ and $g(\cdot)$ is a nonlinear function with the following graph:

The $g(\cdot)$ is the only nonlinearity in this system. We want to linearize this entire system around a operating point/equilibrium. Any point x_{\star} is an operating point if $\frac{d}{dt}\vec{x}(t) = \vec{0}$.

(a) If we have fixed $u_{\star}(t) = -1$, what values of γ and β will ensure $\frac{d}{dt}\vec{x}(t) = \vec{0}$?

(b) Now that you have the three operating points, linearize the system about the operating point (x^{*}₃, u_{*}) that has the largest value for γ. Specifically, what we want is as follows. Let δx_i(t) = x(t) - x^{*}_i for i = 1, 2, 3, and δu(t) = u(t) - u_{*}. We can in principle write the *linearized system* for each operating point in the following form:

(linearization about
$$(\vec{x}_i^{\star}, u_{\star})$$
) $\frac{\mathrm{d}}{\mathrm{d}t}\vec{\delta x}_i(t) = A_i\vec{\delta x}_i(t) + B_i\delta u(t) + \vec{w}_i(t)$ (9)

where $\vec{w}_i(t)$ is a disturbance that also includes the approximation error due to linearization. For this part, find A_i and B_i .

We have provided below the function $g(\gamma)$ and its derivative $\frac{\partial g}{\partial \gamma}$.

(c) Which of the operating points are *stable*? Which are *unstable*?

Contributors:

- Neelesh Ramachandran.
- Kuan-Yun Lee.
- Alex Devonport.
- Kumar Krishna Agrawal.