EECSI6B DIS $8 B$ remote Any questions hefare we get started?
Learning objectives

- Gram Schmidt algorithm - how to turn a set of vectors into an orthonamal set of vectors

$$
\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle=0 \quad J\left|\vec{v}_{i}\right|=1
$$

- Examples translating proof ask into something we can work with
- How to express a vector in tums of an orthonormal basis
- Properties of orthonormal matrices

$$
\begin{aligned}
& \prod_{n \times m} \square_{n>m(\text { tall })} \quad A^{\top} A=\underset{(m \times m)}{I} \quad \underset{(n \times n)}{A A^{\top} \neq \underset{(n \times n)}{I}} \\
& \underset{n \times n(\text { square })}{\square_{(n \times n)}} A^{\top} A=I \\
& \underset{(n \times n)}{I}, A A^{\top}=I, A^{-1}=A^{\top}
\end{aligned}
$$

$$
\{\underbrace{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}}_{\text {set of vectors }}\} \overbrace{\text { at every loop }}^{G S \text { algorithm }}
$$

$\left\{\vec{v}_{1}, \vec{q}_{2}, \ldots, \vec{q}_{n}\right\}$ set we want to build, where
all $\left|\vec{q}_{i}\right|=1$

$$
\vec{q}_{i}^{+} \vec{q}_{j}=0
$$

if j
(1)take a vector ($\overrightarrow{v i}_{i}$)
(2) Remove parts of $\overrightarrow{v i}^{\text {that ave accounted forty }}$ in trelet of orthonormal vectors we've alveedy built up-
(3) Normalize what's leftover
(4) add to our set/dickionany \& vectors (newt vector \vec{q}_{i})

EECS 16B Designing Information Devices and Systems II
Fall 2021 Discussion Worksheet
Discussion 8B

The following notes are useful for this discussion: Note 12.

1. Gram-Schmidt Algorithm

Let's apply Gram-Schmidt orthonormalization to a list of three linearly independent vectors $\left[\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right]$.
(a) Find unit vector \vec{q}_{1} such that $\operatorname{span}\left(\left\{\vec{q}_{1}\right\}\right)=\operatorname{span}\left(\left\{\vec{s}_{1}\right\}\right) ., \vec{q}_{1} \dot{q}_{1} \dot{\zeta}_{1}$, ave in the sure

Option 1: Take \vec{S}_{1} and "normalize (1)"
\rightarrow divide by it's noon direction

$$
\left\|-\stackrel{\rightharpoonup}{q}_{1}\right\|=1-1\| \| \vec{q}_{1} \|=1
$$

(b) Given \vec{q}_{1} from the previous step, find unit vector $\vec{q}_{2} \operatorname{such}$ that $\operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}\right\}\right)=\operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}\right\}\right)$ and \vec{q}_{2} is orthogonal to \vec{q}_{1}.

\vec{q}_{1} is now part of our set of orthonormalized rectors peeve from \vec{s}_{2} pavtsof it that point along \vec{q}_{2}
(1) compute

$$
\begin{aligned}
& \operatorname{proj}_{\operatorname{v}_{1}} \vec{s}_{2}=\vec{q}_{1}(\underbrace{\vec{q}_{1}^{\top} \vec{q}_{1}})^{-1} \vec{q}_{1}^{\top} \vec{s}_{r_{2}} \\
&=\vec{q}_{1} \cdot \vec{q}_{1}^{\tau} \vec{s}_{2} \\
& \text { projections from } \vec{s}_{2}
\end{aligned}
$$

(2) Remare projections from \vec{s}_{2}
A $\vec{s}_{2}-\left(\vec{q}_{1}, \vec{s}_{2}\right) \vec{q}_{1}=$ a vector that points in a direction orthogonal $A \vec{s}_{2}-\left(\vec{q}_{1} \vec{s}_{2}\right) \vec{q}_{1}=$ a vector that
to \vec{q}_{1}.
(3) Normalize: $\quad \overrightarrow{q_{1}}=\frac{\vec{s}_{2}-\left(\vec{q}_{1} \top_{s_{2}}\right) \vec{q}_{1}}{\left(\| \vec{s}_{2}-\left(\overrightarrow{q_{1}} \tau s_{2}\right) \overrightarrow{q_{1}} \eta\right.}$
(c) Suppose we want to show that $\operatorname{Span}\left(\left\{\vec{q}_{g}, \vec{q}_{2}\right\}\right)=\operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}\right\}\right)$. What does this mean mathematically? Hint: you cannot use the wordspan, but must capture the same concept in your translation of the statement we want to show.

What is $\operatorname{span}\left(\left(\vec{q}_{1}, \vec{q}_{2}\right)\right)$? what object? Collection (of vectors) \rightarrow it's a set want to show two sets are equal. equalif all elements in one set are in
$A=B$
the other and vice versa
$\forall C \vec{s}_{1}+d \vec{s}_{2} \in \operatorname{Span}\left\{\vec{s}_{1}, \vec{s}_{2}\right\}$
$\exists a \vec{q}_{1}+b \vec{q}_{2} \in \operatorname{Span}\left\{\vec{q}_{1}, \vec{q}_{2}\right\}$
$c \vec{s}_{1}+d \vec{s}_{2}=a \vec{q}_{1}+b \vec{q}_{2}$

If $\vec{s}_{2} \vec{i}_{i} \vec{q}_{1}$ point in the save direction
(d) What would happen if $\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}$ were not linearly independent, but rather \vec{s}_{1} were a multiple

Ex,

$$
=\frac{\vec{S}_{2}-\vec{S}_{2} \rightarrow \overrightarrow{0}}{l l} \vec{S}^{\text {independent, }}
$$

(e) Now given \vec{q}_{1} and \vec{q}_{2} in parts (a) and (b), find \vec{q}_{3} such that $\operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}\right)=\operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}\right)$, and \vec{q}_{3} is orthogonal to both \vec{q}_{1} and \vec{q}_{2}, and finally $\left\|\vec{q}_{3}\right\|=1$.
(1) Project:
(2) Remare

$$
=\left(\vec{q}_{1}, \vec{s}_{3}\right) \overrightarrow{q_{1}}+\left\langle\vec{q}_{2}, \vec{s}_{3}\right\rangle \vec{q}_{2}
$$

$$
\vec{r}=\vec{s}_{3}-\left(\vec{s}_{3}, \vec{q}_{1}\right) \vec{q}_{1}-\left(\vec{q}_{2}, \vec{s}_{3}\right) \vec{q}_{2}
$$

(3) Normalize

$$
\stackrel{\rightharpoonup}{q}_{3}=\frac{\vec{v}}{\|\stackrel{\rightharpoonup}{r}\|}
$$

(f) [Practice] Confirm that $\operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{z_{2}}\right\}\right)=\operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}\right)$. Not Solution, but a sketch:

If starting from $\operatorname{Span}\left[\vec{q}_{1}, \vec{q}_{2}\right]=S_{p a n}\left[\vec{s}_{1}, \overrightarrow{s_{2}}\right]$ We have an easier job: just have to show that \vec{q}_{3} can be written in tums of $\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}$ and \vec{s}_{3} can
be written in terms of $\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}$
Sothat vectors that can be written in terms of $\vec{q}_{1}, \vec{q}_{2}, \rightharpoonup_{3}$ If not assuming anything except that $\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}$ is the output of Gram Schmidt, then have to do this part, without just saying it, giving what the coefficients would be. $\vec{S}_{1}, \vec{S}_{2}, \vec{S}_{3}$, and vectors that can le written in terms of $\vec{S}_{1}, \vec{S}_{2}, \overrightarrow{S_{3}}$ are writable interns of $\vec{q}_{1}, \vec{q}_{2}, \overrightarrow{q_{3}}$
of \vec{s}_{2} ?

- Orthogonal (ie. $\left\langle\vec{a}_{i}, \vec{a}_{j}\right\rangle=\vec{a}_{j}^{\top} \vec{a}_{i}=\underset{\boldsymbol{\omega}}{0}$ when $i \neq j$)

- Normalized (ie. vectors with length equal to 1, $\left\|\vec{a}_{i}\right\|=1$). This implies that $\left\|\vec{a}_{i}\right\|_{2}=\left\langle\vec{a}_{i}, \vec{a}_{i}\right\rangle=\vec{a}_{i}^{\top} \vec{a}_{i}=$

1. Gram schmidt does generate an orthonormal matrix from a set not an! (who ital)
inverse (b) Again, suppose $A \in \mathbb{R}^{n \times m}$ where $n \geq m$ is an orthonormal matrix. Show that the projection of \vec{y} onto the subspace spanned by the columns of A is now $A A^{\top} \vec{y}$.
Q) What does onto the subspace spanned by the columns of
$\operatorname{pro}_{\operatorname{Span}}\left(\vec{a}_{1}, \vec{a}_{2},-\vec{a}_{m}\right)$
\vec{y}

$$
=A\left[\begin{array}{c}
-\overrightarrow{a_{1}} \tau \\
-\frac{\vdots}{a_{m}} \tau
\end{array}\right] \begin{aligned}
& \succ \\
& y
\end{aligned}
$$

A: Nonsquare matrices don't have inverses
$\left(A A^{t} \neq I\right)$ Need both

$$
A^{\top} A, \Delta_{A}^{\top}=I
$$ this mean?

to he inverses

$$
\approx
$$

(only square (c) Show if $A \in \mathbb{R}^{n \times n}$) is an orthonormal matrix then the columns, \vec{a}_{i}, form a basis for \mathbb{R}^{N}. Hint: can
(1) Span $\mid P$ basis: "a set of vectors that let you write even vector in $\mathbb{R}^{n} \|^{n}$
(2) 1 in indep. (for \mathbb{R}^{n}) as qunique linear combination of the vectors in the set $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\} \leftarrow$ basis f any $\vec{v} \in \mathbb{R}^{n}$ can be expressed $A B=I$
$a_{1}, \cdots, a_{n} \leqslant \quad \sum_{i=1}^{n} \beta_{i} \vec{a}_{i}=\vec{v}$ only one possible get of scalars $\beta i v$
that give us \vec{v}.
$A T$ if A, B square, then inverses:
then inverses:
Contributors: $A^{-1}=B$$\quad$ What is $\operatorname{proj}_{\operatorname{spann}(A)} \vec{y}=A^{t} \vec{y}$ when A is square?

- Regina Eckert. $B^{-1}=A$

$$
\begin{array}{ll}
\text { What is progspanf(A) } & A A^{-1}=I=A^{-1} A \\
\rightarrow A^{\top} A=I &
\end{array}
$$

- Druv Pi.
- Neelesh Ramachandran.
(true for or thornomal) mats

When A is square and orthonormal

$$
\begin{aligned}
& =A\left(\frac{t}{m \times m}\right)^{-1} A^{t}> \\
& =A \frac{T}{T} A^{\top} \vec{y} \\
& \geq A\left[\begin{array}{c}
\vec{a}_{1}^{\top} \vec{y} \\
\vec{a}_{7}^{\top} \vec{y} \\
\vec{a}_{m} \vec{y}^{y}
\end{array}\right]=\sum_{i=1}^{m}\left(\vec{a}_{i}^{\tau} \vec{y}\right) \vec{a}_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) When } A \in \mathbb{R}^{n \times m} \text { and } n \geq m \text { (ide. for tall matrices), show that if the matrix is orthonormal, then }
\end{aligned}
$$

$$
\begin{align*}
& A^{\top}=\left[\begin{array}{l}
-\vec{a}_{2}^{\tau}- \\
-\vec{a}_{2}^{\top}- \\
i \dot{a}_{n}^{\tau}
\end{array}\right]
\end{align*}
$$

orthogonal
columns
of dep.
A
$\begin{aligned} & \text { of vectors } \\ & \text { provided } \\ & \text { wethrow } \\ & \text { away } \\ & \stackrel{\rightharpoonup}{0} \text { vectors }\end{aligned}$
or lin.

