EECSIGB DISSB remote Any questions before we get started?
Learning objectives
• Gram Schmidt algorithm - how to turn a set of vectors into
an orthonormal set of vectors

$$\{\vec{v}_i, \vec{v}_j\} = 0$$
 $\|\vec{v}_i\| = 1$
• Examples if translating proof ask into something we can work with
• How to express a vector in terms of an orthonormal basis
• Proparties of orthonormal matrices
A $\|\vec{A}^T A = \vec{I}$ $AA^T \neq \vec{I}$
 $nxm (mxm) (nxn)$ (nxn)
 $n > m (tull)$
 $A = \vec{I}$, $AA^T = \vec{I}$, $A^{-1} = A^T$
 $nxn(square)$ (nxn)

EECS 16B Designing Information Devices and Systems II Fall 2021 Discussion Worksheet Discussion 8B

The following notes are useful for this discussion: Note 12.

1. Gram-Schmidt Algorithm

Let's apply Gram-Schmidt orthonormalization to a list of three linearly independent vectors $[\vec{s}_1, \vec{s}_2, \vec{s}_3]$.

(a) Find unit vector
$$\vec{q}_{i}$$
 such that $\operatorname{Span}(\{\vec{q}_{i}\}) = \operatorname{Span}(\{\vec{s}_{i}\})$.
Qftin 1: T also \vec{s}_{i} and 'normalize $H^{(1)}$
 T divide by it's norm
 T divide by it's normalized rectors
 T divide from S_{2} parts divide that paint along q_{1}
 T divide from S_{2}
 T divide from S_{2}

(d) What would happen if
$$\{\vec{s}_1, \vec{s}_2, \vec{s}_3\}$$
 were *not* linearly independent, but rather \vec{s}_1 were a multiple
of \vec{s}_2 ?
 $(\vec{s}_2, \vec{s}_2, \vec{s}_2, \vec{s}_2, \vec{s}_3, \vec{s}_2, \vec{s}_3, \vec{s}_2, \vec{s}_3, \vec{s}_2, \vec{s}_3, \vec{s}_2, \vec{s}_3, \vec{s}_2, \vec{s}_3, \vec{s}_$

(e) Now given $\vec{q_1}$ and $\vec{q_2}$ in parts (a) and (b), find $\vec{q_3}$ such that $\text{Span}(\{\vec{q_1}, \vec{q_2}, \vec{q_3}\}) = \text{Span}(\{\vec{s_1}, \vec{s_2}, \vec{s_3}\})$, and $\vec{q_3}$ is orthogonal to both $\vec{q_1}$ and $\vec{q_2}$, and finally $\|\vec{q_3}\| = 1$.

(1) Project:
$$projspon[\vec{q}_1, \vec{q}_2]^{\vec{s}_3} = \left[\begin{pmatrix} l & q_1 & q_2 \\ q_1 & q_1 \end{pmatrix} \right] \left[\left[\vec{q}_1 & \vec{q}_2 \right] \right] \left[\vec{q}_1 & \vec{q}_2 \right] \right] \left[\vec{q}_1 & \vec{q}_1 \right]^{T} \vec{s}_3$$

(2) Remove
 $= (\vec{q}_1, \vec{s}_3) \vec{q}_1 + \langle \vec{q}_2, \vec{s}_3 \rangle \vec{q}_2$
 $\vec{r}_2 \quad \vec{s}_3 - (\vec{s}_3, \vec{q}_1) \cdot \vec{q}_1 - \langle \vec{q}_2, \vec{s}_3 \rangle \vec{q}_2$
(3) Normalize
 $\vec{q}_3 = \frac{\vec{r}}{||\vec{r}||}$

(1) [Practice] Confirm that $\text{Span}(\{\vec{q}_1, \vec{q}_2, \vec{q}_3\}) = \text{Span}(\{\vec{s}_1, \vec{s}_2, \vec{s}_3\})$. Not solution, but a sketch: If starting from $\text{Span}[\vec{q}_1, \vec{q}_1]^2 = \text{Span}[\vec{s}_1, \vec{s}_2]$ If not assuming anything except we have an easier job: just have to that $\{\vec{q}_1, \vec{q}_2, \vec{q}_2\}$ is the artput of show that \vec{q}_3 can be written in Grave Schmidt, then have terms of $\vec{s}_1, \vec{s}_2, \vec{s}_3$ and \vec{s}_3 can be written in terms of $\vec{q}_1, \vec{q}_2, \vec{q}_3$ So that vectors that can be written in terms of $\vec{q}_1, \vec{q}_2, \vec{q}_3$ Can be written in terms of $\vec{s}_1, \vec{s}_2, \vec{s}_3$ and vectors that can be written in terms of $\vec{s}_1, \vec{s}_2, \vec{s}_3$ are written in terms of $\vec{q}_1, \vec{q}_2, \vec{q}_3$

Discussion 8B, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission.