EECS16B DIS $9 B$ remote
Learning objectives

Q: non-square orthonormal matrices?
(1) Tall orthonormal matrices, U, have $U^{\top} U=I$
(2) Orthonormal transforms preserve inner products (and therefore lengths)

$$
\langle\vec{x}, \vec{y}\rangle=\|\vec{x}\|\|\vec{y}\| \cos \theta
$$

same
(3) Least squares problem and solution from a particular perspective': If some factorization of a matrix, X, into $\bigcup_{m \times m} V_{n \times n}^{T}$ exists, we can solve least squares really quickly.
(U, V orthonormal, \sum diagonal)

* This is a preview. Mail get more in lecture on Thursday and rextweed.

Some dependencies/reference sheet

- $\langle\vec{x}, \vec{y}\rangle=\vec{x}^{\top} \vec{y}=\vec{y}^{\top} \vec{x} \quad$ (inner product) $\quad \vec{x}, \vec{y} \in \mathbb{R}^{n}$
- $(A B)^{T}=B^{T} A^{T} \quad$ (transpose of matrix product)

2

$$
\left(\begin{array}{c}
\text { to prove } \uparrow \text { write columns of } A, \\
\text { and rows of } B \text { and } A B \\
\text { in terms of those vectors }
\end{array}\right)
$$

3- $\|\vec{x}\|^{2}=(\vec{x}, \vec{x})=\vec{x}^{+} \vec{x} \quad\left(\begin{array}{c}\text { norm/magnitude/length } \\ \text { in terms of inner product }\end{array}\right.$ in terms of inner product)

$$
\left[\begin{array}{c}
\left.-\vec{x}_{1}^{\top} \sqrt{v}\right) \\
\vdots \\
-\vec{x}_{m}^{\top} v-
\end{array}\right]
$$

$\left.\begin{array}{l}\text { (How matrix multiplication affects } \\ \text { columns and rows to the right }\end{array}\right)$ columns and rows to the right
and left respectively
$\bar{S} \bullet A \vec{x} \approx \vec{b} \rightarrow \vec{\lambda} \vec{\lambda}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{b} \quad$ (least squares solution)
$\overrightarrow{\hat{b}}=A\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}$ (least squares projection)

EECS 16B Designing Information Devices and Systems II Fall 2021 Discussion Worksheet

Discussion 9B

The following notes are useful for this discussion: Note 14

1. Orthonormality and Least Squares
(a) Let U be an $m \times n$ matrix with orthonormal columns, with $m \geq n$. Compute $U^{\top} U$. How does this
change if $m<n$?

$$
\begin{aligned}
& V=\left(\begin{array}{cccc}
1 & & & 1 \\
u_{1} & u_{2} & \cdots & u_{n} \\
1 & 1 & & 1
\end{array}\right) \\
& \Delta_{i} \in \mathbb{R}^{m} \\
& \text { - is tall or square } \\
& (m>n) \quad(m=n)
\end{aligned}
$$

If we have m orthonormal columns - forms a basis No other directions in $U^{T} U$ not! identity $(m<n)$
are unit norm and
Square
$n \times n$ orthonormal matrix U (the columns of U are unit norm and mutually orthogonal). You also have real vectors $\vec{x}_{1}, \vec{x}_{2}, \vec{y}_{1}, \vec{y}_{2}$ such that

$$
U \vec{x} \rightarrow \vec{y} \quad \rightarrow \begin{aligned}
& \vec{y}_{1}=U \vec{x}_{1} \\
& \vec{y}_{2}=U \vec{x}_{2}
\end{aligned} \quad \vec{x}_{1}, \vec{x}_{2}, \overrightarrow{y_{2}}, \overrightarrow{y_{2}} \in \mathbb{R}^{n}
$$

Calculate $\left\langle\vec{y}_{1}, \vec{y}_{2}\right\rangle=\vec{y}_{2}^{\top} \vec{y}_{1}=\vec{y}_{1}^{\top} \vec{y}_{2}$ in terms of $\left\langle\vec{x}_{1}, \vec{x}_{2}\right\rangle=\vec{x}_{2}^{\top} \vec{x}_{1}=\vec{x}_{1}^{\top} \vec{x}_{2}$.

Discussion 9B, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission.
then orthonormal matrices/ transformations preserve these quantities
(c) Following the previous question, express $\left\|\vec{y}_{1}\right\|_{2}^{2}$ and $\left\|\vec{y}_{2}\right\|_{2}^{2}$ in terms of $\left\|\vec{x}_{1}\right\|_{2}^{2}$ and $\left\|\vec{x}_{2}\right\|_{2}^{2}$.

$$
\begin{array}{ll}
\left\langle\overrightarrow{y_{1}}, \overrightarrow{y_{1}}\right\rangle=\left\|\overrightarrow{y_{1}}\right\|_{2}^{2} \\
\left\langle\vec{x}_{2}, \overrightarrow{x_{1}}\right\rangle=\left\|\vec{x}_{1}\right\|_{2}^{2}
\end{array} \quad \begin{array}{ll}
\left\langle\vec{y}_{2}\left\|_{2}^{2}=\right\| \vec{x}_{2} \|_{2}^{2}\right. \\
\langle\vec{x}, \vec{x}\rangle=\sum_{i=1}^{n} x_{2}^{2} & \left\|\vec{y}_{2}\right\|_{2}=\left\|\vec{x}_{2}\right\|_{2}
\end{array}
$$

(d) Suppose you observe data coming from the model $y_{i}=\vec{a}^{\top} \vec{x}_{i}$, and you want to find the linear scaleparameters (each a_{i}). We are trying to learn the model \vec{a}. You have m data points $\left(\vec{x}_{i}, y_{i}\right)$, with each $\vec{x}_{i} \in \mathbb{R}^{n}$. Note that \vec{x}_{i} refers to the i-th vector, not the i-th element of a single vector. Each \vec{x}_{i} is a different input vector that you take the inner product of with \vec{a}, giving a scalar y_{i}.
Set up a least squares formulation for estimating \vec{a}, and find the solution to the least squares problem.

$$
\begin{gathered}
\vec{u}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \ell \\
\overrightarrow{a^{2}}=\left[a_{1} a_{2} \ldots a_{n}\right] \\
\vec{x}_{\dot{v}}=1 R^{n}
\end{gathered}
$$

want to find this

$$
(x, y, y)^{\text {cosedev }}
$$

$$
\left(\bar{x}_{2}, y_{2}\right) \cdots\left(\bar{x}_{m}, y_{m}\right)
$$

$$
y_{m}=a^{-T} \vec{x}_{m}
$$

Least squares problem:
Find \vec{a} that minimizes the error nom squared:

$$
\left\|X_{a}-\vec{y}\right\|^{2}
$$

(e) Now suppose V is an orthonormal square matrix, and rather than observing $\vec{a}^{\top} \vec{x}$ directly, we actually observe data points that result from our inputs being transformed by V^{\top} as follows:

$$
\begin{equation*}
\rightarrow \overrightarrow{\vec{x}}=V^{\top} \vec{x} \rightarrow \overrightarrow{\tilde{X}}^{\top}=\vec{X}^{\top}\left(V^{\top}\right)^{\top}=\vec{X}^{\top} V_{(} \tag{1}
\end{equation*}
$$

That is, our model acts on the modified input data $\overrightarrow{\widetilde{x}}_{i}$, so the data points we collected are now $\left(\vec{x}_{i}, y_{i}\right)$. We must now consider the new model:

$$
\begin{equation*}
=\overrightarrow{\tilde{a}}^{\top} V^{\top} \vec{x}_{i} \tag{3}
\end{equation*}
$$

Set up a least-squares formulation for $\hat{\vec{a}}$. How is $\hat{\vec{a}}$ related to $\hat{\vec{a}}$.

$$
\begin{aligned}
& x \text { 的(d) }
\end{aligned}
$$

$\left.\begin{array}{c}\overrightarrow{\tilde{a}} \text { (solution, minimizes } \\ \|\tilde{x} \vec{a}-\vec{y}\|^{2}\end{array}\right)$

$$
\|\tilde{X} \vec{a}-\vec{y}\|^{2} \quad \overrightarrow{\hat{a}}=\left(\tilde{X}^{T \sim} \tilde{X}\right)^{-1} \tilde{X}^{\top} \vec{y}
$$

V is a orthonormal square
matrix
then V is invertible

$$
\begin{aligned}
& (A B)^{-1}=B^{-1} A^{-1} \\
& \text { square, Avertible } \\
& A B\left(B^{-1} A^{-1}\right)=A B B^{-1} A^{-1}=I
\end{aligned}
$$

$$
V^{\top} V=I(\underset{\text { matrix }}{\text { orthonormal }} V)
$$

$$
\begin{aligned}
\overrightarrow{\hat{a}} & =\left((X V)^{\top}(X V)\right)^{-1}(X V)^{\top} \vec{y} \\
& =\left(V^{\top} X^{\top} X V\right)^{-1} V^{\top} X^{\top} \vec{y} \\
& =V^{-1}(\underbrace{\left.X^{\top} X\right)^{-1}\left(V^{\top}\right)^{-1} V^{\top} X^{\top} \vec{y}}_{\text {(ann compute }}
\end{aligned}
$$

can compute when X 's unllspaa is only $\{03\}$ or alt.
X has Inner independent columns

$$
=V^{-1}\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}
$$

$$
\Leftrightarrow \underbrace{V^{T}\left(x^{\top} x\right)^{-1} x^{\tau} \hat{y}}_{\overrightarrow{\hat{2}}}=V_{\text {BRa picture }}^{\tau} \overrightarrow{\hat{a}}
$$

Big picture! When we transform our data (\vec{x} vectors)

$$
\vec{x}=V^{\tau} \vec{x}
$$

$$
\overrightarrow{\tilde{a}}=V^{\dagger} \overrightarrow{\hat{a}} \leftarrow
$$ also ends up being transformed the same way

(f) Now suppose that we have the matrix

$$
U=\left[\begin{array}{ccc}
1 & 1 & \\
\cdots & \vec{u}_{2} & \cdots \\
u_{1} & \cdots & u_{m} \\
1 & 1 & 1
\end{array}\right]
$$

Here we assume that we have more data points than the dimension of our space (that is, $m>n$). Also, the transformation V in part e) is the same V in this factorized representation.
Set up a least squares formulation for estimating $\overrightarrow{\tilde{a}}$ and find the solution to the least squares. Is there anything interesting going on?
Note: Don't worry about how we would find U, Σ, V^{\top} for now; assume that X has the given form and that U and V are orthonormal.
Hint: Start by substituting the factorized representation of X into the answer of the previous part.

Contributors:

- Neelesh Ramachandran.
- Kuan-Yun Lee.
- Anent Sahai.

$$
=V^{\top}\left(V V^{\top} \mathcal{C} V^{\top}\right)^{-1} V \Sigma^{\top} U^{\top} \vec{y}
$$

- Kumar Krishna Agrawal.

$$
\begin{aligned}
& \left(\Sigma^{\top} \Sigma^{\top}\right)^{-1}=\left(\left[\left.\begin{array}{lll}
\sigma_{1} & & \\
& \delta_{2} & \\
& & \sigma_{n}
\end{array} \right\rvert\, o_{n \times m-n}\right]\left[\begin{array}{l}
\sigma_{1} \sigma_{2} \ldots \\
\sigma_{n} \\
0
\end{array}\right)^{-1}\right. \\
& \begin{aligned}
=\left(\left[\begin{array}{llll}
\sigma_{1}^{2} & & & \\
& \sigma_{2}^{2} & & \\
& & \cdots & v_{n}^{2}
\end{array}\right]\right)^{-1} & =\left[\begin{array}{lll}
\frac{1}{\sigma_{1}^{2}} & & \\
& & \\
& \text { assume } & \\
\sigma_{2}^{2} & \frac{1}{\sigma_{n}^{2}}
\end{array}\right] \\
& \text { all } i^{\prime} s
\end{aligned} \\
& \underset{\tilde{a}}{\vec{a}}=\left[\begin{array}{llll}
\frac{1}{\sigma_{1}^{2}} & & & \\
& \ddots & \ddots & \\
& & & \sigma_{n}^{2}
\end{array}\right]\left[\begin{array}{lllll}
\delta_{1} & & & & \\
& \delta_{2} & & & \\
& & \ddots & & \\
& & & \sigma_{n} &
\end{array}\right] U^{T} \vec{y} \\
& \begin{array}{l}
=\left[\begin{array}{ccc|c}
\frac{1}{\sigma_{1}} & & & \\
& & \frac{1}{\delta_{n}} & 0
\end{array}\right] \stackrel{v^{i} \vec{y}}{ } \\
=\left[\begin{array}{ccc}
\frac{1}{\sigma_{1}} & \vec{u}_{1}^{\top} \vec{y} & 2
\end{array}\right] \quad\left[\begin{array}{c}
\vec{u}_{1}^{\top} \\
\vdots \\
\vdots \\
\vec{u}_{i}^{i} \vec{y}
\end{array}\right]
\end{array} \\
& \text { products! } \\
& \text { has the robe of leu } \text { an orthonormal matrix } A \text { ! (} A^{\top} A=I \\
& \text { an orthoharmal matux } A \text { was orthogonal } \lambda \stackrel{\otimes}{x} \approx \vec{b} \\
& \text { If we have some faetouncition for for } X \text { 就 } \\
& \text { that gives us orthonormal matrices } \\
& \text { (east squares is not computationally hang } \\
& Q:\left(\Sigma^{T} L^{-1}\right)^{?}=\left(\Sigma^{-1}\right)\left(\Sigma^{T}\right)^{-1} A: \text { No! } \Sigma \text { is not square! }
\end{aligned}
$$

Q: What is the name of the factorization?

Q: $X^{t} X \rightarrow$ if X or $X^{\top} X$ has lin. dep. cols is $\left(X^{T} X\right)^{\Rightarrow r}$ computable?
X: No, need linearly independent columns of X.
$X^{\top} X_{\vec{a}}=X^{\top}$ y $t<$ always has a solution.
a $B \cup \pi$ solution mani te unique. If so,
(1) To solve, find aullspace of $x^{t} x$

$$
\begin{aligned}
& \vec{a}_{N} \in N\left(X^{\top} x\right) \rightarrow x^{\top} x\left(\vec{a}_{s}+\vec{a}_{n}\right)=x^{\top} x \vec{a}_{s}=\vec{y} \\
& \text { (} \vec{a} \text { is a solution) }
\end{aligned}
$$

τ find one solution
(2) Tale X, X, ruin: GS on- its columns/delete lin. dep. columns \rightarrow get $\tilde{X} \rightarrow$ Do least square $s: \vec{a}$ $\vec{a} \rightarrow \vec{a}$ by adding appropriate zeroes/4vanfformitiy

