EECSI6B DISIIB remote
learning objectives
IJ Writing linearizations of a function at an operating point for functions of one variable
[2] Extending linearizations to functions of multiple variables
Linearization: Coming up with a linear model for a nonlinear systems that is "true" for states close to some state (operating point)

Q: Why do we want to look at a nonlinear system as if it were linear?
A: Use all of our tools we have developed up until now!

Control system

$$
\left.\left.\begin{array}{l}
\vec{x}[i t 1]=\Delta \vec{x}[i]+B \vec{u}[i] \\
\frac{d \vec{x}}{d t}(t)=\Delta \vec{x}(t)+\underline{B} \vec{u}(t)
\end{array}\right\} \begin{array}{l}
\left(\begin{array}{l}
\text { (near system }
\end{array}\right) \\
\left(\begin{array}{l}
\text { continuous time } \\
\text { linear system }
\end{array}\right.
\end{array}\right)
$$

Mot systems in real life are nohlinear

$$
\rightarrow \vec{x}(i t 1]=f(\vec{x}[i], \vec{u}[i])
$$

Ex: $\quad x_{1}[i+1)=x_{1}^{2}[i]+x_{2}^{2}[i] \leftarrow$ nonlinew function

$$
\left.x_{2}(i+1]=x_{2}[i] \quad \text { of } x_{1}\right)=\left[\begin{array}{l}
x_{i}[i] \\
x_{2}[i]
\end{array}\right]
$$

EECS 16B Designing Information Devices and Systems II Fall 2021 Discussion Worksheet

Discussion 11B

The following notes are useful for this discussion: Note 19

1. Linear Approximation

A common way to approximate a nonlinear function is to perform linearization near a point. In the case of a one-dimensional function $f(x)$, the linear approximation of $f(x)$ at a point x_{\star} is given by

$$
\begin{equation*}
\Longrightarrow f(x) \approx f\left(x_{\star}\right)+f^{\prime}\left(x_{\star}\right) \cdot\left(x-x_{\star}\right) \tag{1}
\end{equation*}
$$

where $f^{\prime}\left(x_{\star}\right):=\frac{\mathrm{d} f}{\mathrm{~d} x}\left(x_{\star}\right)$ is the derivative of $f(x)$ at $x=x_{\star}$.
Keep in mind that wherever we see x_{\star}, this denotes a constant value or operating point.
(a) Suppose we have the single-variable function $f(x)=\overline{x^{3}-3 x^{2}}$. We can plot the function $f(x)$ as follows:

i. Write the linear approximation of the function around an arbitrary point x_{\star}.

$$
\begin{aligned}
& f\left(x_{A}\right)=x_{A}^{3}-3 x_{A}^{2} \\
& f^{\prime}(x)=\frac{\frac{d}{d x}\binom{x^{3}-3 x^{2}}{f(x)}=3 x^{2}-6 x \quad f^{\prime}\left(x_{A}\right)=3 x_{A}^{2}-6 x_{A}}{f(x) \approx \underbrace{\left(x_{A}^{3}-3 x_{A}^{2}\right)+\left(3 x_{A}^{2}-6 x_{A}\right)\left(x-x_{A}\right)}_{f\left(x_{A}\right)}} \text { L linearization of } f(x) \text { about } x_{k}^{\text {the }}
\end{aligned}
$$

ii. Using the expression above, linearize the function around the point $x=1.5$. Draw the linearization into the plot of part i).

$$
\begin{aligned}
f(x) & \approx\left(x_{A}^{3}-3 x_{A}^{2}\right)+\left(3 x_{A}^{2}-6 x_{A}\right)\left(x-x_{A}\right) \\
x_{A} & =1.5=\frac{3}{2} \\
f(x) & \approx\left(\left(\frac{3}{2}\right)^{3}-3\left(\frac{3}{2}\right)^{2}\right)+\left(3\left(\frac{3}{2}\right)^{2}-6\left(\frac{3}{2}\right)\right)\left(x-\frac{3}{2}\right) \quad f\left(x_{k}\right)=\frac{27}{8} \\
& =\frac{27}{8}-\frac{27}{4}+\left(\frac{27}{4}-\frac{18}{2}\right)\left(x-\frac{3}{2}\right) \\
& =-\frac{27}{8}+\left(\frac{27-36}{4}\right)\left(x-\frac{3}{2}\right) \\
& =-\frac{27}{8}+\left(-\frac{9}{4}\right)\left(x-\frac{3}{2}\right) \\
& \approx-\frac{27}{8}-\frac{9}{4} x+\frac{27}{8} \\
& =-\frac{9}{4} x
\end{aligned}
$$

ii. Using the expression above, linearize the function around the point $x=1.5$. Draw the linearization into the plot of part i).

Dove above.

Now that we have this specific point's linearization, we understand how the function behaves around the point. Let's use this linearization to evaluate the function's approximation at $x=1.7$ (based on our approximation at $x=1.5$, we want to see how a $\delta=+0.2$ shift in the x value changes the corresponding $f(x)$ value). How does this approximation compare to the exact value of the function at $x=1.7$?

$$
\begin{align*}
f(1.7) & \approx-3.375+(-2.25) \cdot(1.7-1.5) \tag{2}\\
& \approx-3.375-0.45 \tag{3}\\
& \approx-3.825 \tag{4}
\end{align*}
$$

Comparing to the exact value $f(1.7)=1.7^{3}-3 \cdot 1.7^{2}=-3.757$, we find that the difference is 0.068 . Not too bad! What if we repeat with $\delta=1$? To do so, we must use the approximation around $x=1.5$ to compute $x=2.5$, and compare to the exact value $f(2.5)$. How does our new

$$
\begin{aligned}
& \text { pointy) } \\
& \text { (ineivization } \\
& \text { point }
\end{aligned}
$$

$$
\begin{align*}
f(2.5) & \approx-3.375+(-2.25) \cdot(2.5-1.5) \tag{5}\\
\infty & \approx-3.375-2.25 \tag{6}\\
& \approx-5.625 \\
\leftarrow & \text { very different }
\end{align*}
$$

Comparing to the exact value $f(2.5)=2.5^{3}-3 \cdot 2.5^{2}=-3.125$, we find that the difference is much larger; the error jumped to 2.5 ! This is an error multiplication of $\frac{2.5}{0.068} \approx 37$, even though our δ only multiplied by 5 . What happened?
Looking at the actual function, we see that the function has a significant curvature between our "anchor point" of $x_{\star}=1.5$ and $x=2.5$. Our linear model is unable to capture this curvature, and so we estimated $f(2.5)$ as if the function kept decreasing, as it did around $x=1.5$ (where the slope was -2.25$)$.
 in the x coordinate

Now, we can extend this to higher dimensional functions. In the case of a two-dimensional function $f(x, y)$, the linear approximation of $f(x, y)$ at a point $\left(x_{\star}, y_{\star}\right)$ is given by

$$
\begin{align*}
& f(x, y) \approx f\left(x_{\star}, y_{\star}\right)+\underbrace{\frac{\partial f}{\partial x}\left(x_{\star}, y_{\star}\right) \cdot\left(x-x_{\star}\right)}_{\text {anear approximation of } f(x, y) \text { at a point }\left(x_{\star}, y_{\star}\right) \text { is given by small changes }} \underbrace{}_{\text {account for chat changes in } x} \text { set } \frac{\partial f}{\partial y}\left(x_{\star}, y_{\star}\right) \cdot\left(y-y_{\star}\right) . \tag{8}
\end{align*}
$$

where $\frac{\partial f}{\partial x}\left(x_{\star}, y_{\star}\right)$ is the partial derivative of $f(x, y)$ with respect to x at the point $\left(x_{\star}, y_{\star}\right)$, and similarly for $\frac{\partial f}{\partial y}\left(x_{\star}, y_{\star}\right)$
(b) Now, let's see how we can find partial derivatives. When we are given a function $f(x, y)$, we calculate the partial derivative of f with respect to x by fixing y and taking the derivative with respect to x. Given the function $f(x, y)=x^{2} y$, find the partial derivatives $\frac{\partial f(x, y)}{\partial x}$ and $\frac{\partial f(x, y)}{\partial y}$.

$$
\frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left(x^{2} y\right)=y \frac{\partial}{\partial x}\left(x^{2}\right)=2 x y, \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(x^{2} y\right)=x^{2} \frac{\partial}{\partial y} y=x^{2}(1)
$$

(c) Write out the linear approximation of f near $\left(x_{\star}, y_{\star}\right)$.

$$
f(x, y) \approx f\left(x_{A}, y_{A}\right)+2 x_{A} y_{A}\left(x-x_{A}\right)+x_{A}^{2}\left(y-y_{A}\right)
$$

(d) We want to see if the approximation arising from linearization of this function is reasonable for a point close to our point of evaluation. First, approximate $f(x, y)$ at the point $(2.01,3.01)$ using $\left(x_{\star}, y_{\star}\right)=(2,3)$. Next, compare the result to $f(2.01,3.01)$.

$$
\begin{array}{rl}
f(x, y) & =x^{2} y \quad f(2,3)=4 \cdot 3=12 \\
f(x, y) & \approx 12+2(2)(3)(x-2)+(2)^{2}(y-3) \\
& =12+12 x-24+4 y-x 2 \\
\frac{1}{100}=h & 12 x+4 y-24
\end{array}
$$

$$
\begin{aligned}
& =h \quad 12 x+4 y-24 \\
& \\
& f(2.01,3.01)=(2.01)^{2}(3.01)^{4}\left\{\begin{array}{l}
12(2.01)+4(3.01)-24 \\
= \\
=(2+h)^{2}(3+h) \\
= \\
=\left(4+4 h+h^{2}\right)(3 t h) \\
= \\
12(2+h)+4(3+h)-24 \\
\\
\\
24+3 h^{2}+4 h+4 h^{2}+h^{3}
\end{array}\right.
\end{aligned}
$$

$$
=\underbrace{12+16 h t 7 h^{2} t h^{3}}
$$

If h small, how does $h^{2}\left\{h^{3}\right.$ compare to h ?

$$
\begin{array}{rlrl}
h=\frac{1}{100} & h^{2} & =\frac{1}{100^{2}} \quad h^{3}=\frac{1}{100^{3}}=\frac{1}{10^{6}} \\
& =1
\end{array}
$$

$$
\left(h=\frac{1}{100}\right) \quad 12.16(0701
$$

12.16

2
My pint here is just "do lineaurzations only work for small values awry from the operating point? A: No depends on what small means"

Note: inner product operates on two column vectors
(e) We will now define the notion of a derivative as a function, and take a look at one possible representadion of that function.
Given the representation of the derivative as a row-vector, describe a function that can take this representation, along with some column vector defining a change in direction, to return a scalar value (which is the change in the real-valued output). Don't worry if this seems abstract for now, the next subpart will clarify.
ran $<\vec{d}^{\top}$ Derivative \rightarrow row vector $?$ How to combine the ge two into a colum $\leftarrow \vec{V}$ direction \rightarrow column vector single number? CHore that this \# descries a vale of change along. the direction)
(f) Suppose we have now a scalar-valued function $f(\vec{x}, \vec{y})$, which takes in vector-valued arguments $\vec{x} \in$ $\mathbb{R}^{n}, \vec{y} \in \mathbb{R}^{k}$ and outputs a scalar $\in \mathbb{R}$. That is, $f(\vec{x})(\vec{y})$ is $\left.\left(\mathbb{R}^{n}\right), \mathbb{R}^{k}\right) \rightarrow \mathbb{R}$. For this new model involving a yector-valued function, how can we adapt our previous linearization method? One way to linearize the function f is to do it for every single element in $\vec{x}=$ and $\vec{y}=\left[\begin{array}{llll}y_{1} & y_{2} & \ldots & y_{k}\end{array}\right]^{\top}$. Then, when we are looking at x_{i} or y_{j}, we fix everything else as constant. This would give us the linear approximation

$$
\begin{align*}
& f(\vec{x}, \vec{y}) \text { is a Scalar (output) } f(\vec{x}, \vec{y}) \approx \underbrace{f\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+\sum_{i=1}^{n} \frac{{ }^{n}}{} \frac{\partial f(\vec{x}, \vec{y})}{\partial x_{i}}\left(x_{i}-x_{i, \star}\right)+\sum_{j=1}^{k} \frac{\partial f(\vec{x}, \vec{y})}{\partial y_{j}}\left(y_{j}-y_{j, \star}\right) .} \text { but has vector } \tag{9}
\end{align*}
$$

but inputs In order to simplify this equation, we can define the rows $D_{\vec{x}}$ and $D_{\vec{y}}$ as
$\propto \vec{y}$ and \vec{x} both in \mathbb{R}^{n}
Assume that $n=k$ and we define the function $f(\vec{x}, \vec{y})=\vec{x}^{\top} \vec{y}=\sum_{i=1}^{k} x_{i} y_{i}$. Find $D_{\vec{x}} f$ and $D_{\vec{y} f} f$.
[Practice] Next, suppose $g(\vec{x}, \vec{y})=x_{1} x_{2}^{2} y_{1}+x_{1} y_{2}^{3}+x_{2} x_{1} y_{2} y_{1}+\frac{x_{1}^{2}}{x_{2}^{3} y_{1}}$. Find $D_{\vec{x}} g$ and $D_{\vec{y}} g$
Hint: it can help to look at eq. (8), and match the terms in eq. (9) to that formulation.

$$
\begin{aligned}
& \vec{x}-\vec{x}_{k}=\underbrace{\left[\begin{array}{c}
x_{1} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]-\left[\begin{array}{c}
x_{1 A} \\
x_{2 A} \\
\vdots \\
x_{n A}
\end{array}\right]}_{\substack{\text { column } \\
\ln \mathbb{R}^{n}}} \\
& f(\vec{x}, \vec{y})=\dot{\vec{x}}^{T} \vec{y}=\sum_{i=1}^{n} x{\underset{y}{y}}_{y_{i}} \quad \frac{\partial f}{\partial x_{j}}=y_{j} \\
& \frac{\partial f}{\partial y_{j}}=x_{j}
\end{aligned}
$$

(g) Following the above part, find the linear approximation of $f(\vec{x}, \vec{y})$ near $\left.\vec{x}_{\star}=\begin{array}{c}(1) \\ 2\end{array}\right]$ and $\vec{y}_{\star}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$.

$$
\begin{aligned}
& \text { Recall that } f(\vec{x}, \vec{y})=\vec{x}^{\top} \vec{y}=\sum_{i=1}^{k} x_{i} y_{i}=x_{1} y_{1}+x_{2} y_{2} \\
& D_{\vec{x}} f=\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right]=\vec{y}^{\top} \quad D_{\vec{x}} f\left(\vec{x}_{k}, \vec{y}_{k}\right)=\left[\begin{array}{ll}
-1 & 2
\end{array}\right] \\
& D_{\vec{y}} f=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]=\vec{x}^{\top} \quad D_{\vec{y}} f\left(\vec{x}_{\Delta}, \vec{y}_{k}\right)=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \\
& f(\vec{x}, \vec{y}) \approx \\
& f\left(\vec{x}_{*}, \vec{y}_{k}\right)+\left[\begin{array}{ll}
-1 & 2
\end{array}\right]\left(\vec{x}-\vec{x}_{k}\right)+\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left(\vec{y}-\vec{y}_{k}\right) \\
& \vec{x}_{*}^{\top} \vec{y}_{*}=1(-1)+2(2)=3 \\
& = \\
& 3+(-1)\left(x_{1}-1\right)+2\left(x_{2}-2\right)+\left(y_{1}+1\right)+2\left(y_{2}-2\right)
\end{aligned}
$$

function that has a scalar value

$$
\text { (lineavization of } f\left(\vec{x}_{2} \vec{y}\right) \text { at }\left(\vec{x}_{k}, \vec{y}_{k}\right) \text {) }
$$

These linearizations are important for us because we can do many easy computations using linear functions.
Something that might help clarity for $f(\vec{x}, \vec{y})=\vec{x}^{\top} \vec{y}$

$$
\begin{aligned}
& f(\vec{x}, \vec{y})=x_{1} y_{2}+x_{2} y_{2}+\cdots+x_{n} y_{n} \\
& \frac{\partial}{\partial x_{2}} f(\vec{x}, \vec{y})=\frac{\partial}{\partial x_{2}}\left(x_{n=1}^{x_{1} y_{2}}\right)_{n} \text { ! }+\frac{\partial}{\partial x_{2}}\left(x_{2} y_{2}\right)+\cdots+\frac{\partial}{\partial x_{2}}\left(x_{n}^{0} x_{n n}^{0}\right),
\end{aligned}
$$

$$
=0+y_{2}+\underbrace{0 t \cdots+0}
$$

$n-2$ zeroes from $x_{3} y_{3}, \ldots, x_{n} y_{n}$ $=y z$
Contributors:

- Neelesh Ramachandran.
- Kuan-Yun Lee.

Practice: $g(\vec{x}, \vec{y})=x_{1} x_{2}^{2} y_{1}+x_{1} y_{2}^{3}+x_{2} x_{1} y_{2} y_{1}+\frac{x_{1}^{2}}{x_{2}^{3} y_{1}}$

$$
=3 x_{1} y_{2}^{2}+x_{2} x_{2} y_{1}
$$

Stuff all four uptherel. into $D \vec{x} g, D \vec{y} g$

$$
\begin{aligned}
& D_{\vec{x}} \dot{g}=\left[\begin{array}{ll}
\frac{\partial g}{\partial x_{1}} & \frac{\partial g}{\partial x_{2}}
\end{array}\right] \\
& D_{y} \vec{g}=\left[\frac{\partial g}{\partial y_{1}} \frac{\partial g}{\partial y_{2}}\right] \\
& \frac{\partial g}{\partial x_{2}}=\frac{\partial}{\partial x_{1}}\left(x_{1} x_{2}^{2} y_{1}+x_{2} y_{2}^{3} t x_{2} x_{2} y_{2} y_{1}+\frac{x_{1}^{2}}{x_{2}^{3} y_{2}}\right) \\
& =x_{2}^{2} y_{1}+y_{2}^{3}+x_{2} y_{2} y_{1}+\frac{1}{x_{2}^{3} y_{1}} \frac{\partial}{\partial x_{1}}\left(x_{1}^{2}\right) \\
& =x_{2}^{2} y_{1}+y_{2}^{3}+x_{2} y_{2} y_{1}+\frac{1}{x_{2}^{3} y_{1}}\left(2 x_{1}\right) \\
& \frac{\partial y}{\partial x_{2}}=\frac{\partial}{\partial x_{2}}\left(x_{1} x_{2}^{2} y_{1}+x_{2} y_{2}^{3} t x_{2} x_{2} y_{2} y_{2}+\frac{x_{1}^{2}}{x_{2}^{3} y_{1}}\right) \\
& =x_{1} y_{1} \frac{\partial}{\partial x_{2}}\left(x_{2}^{2}\right)+0+x_{2} y_{2} y_{1}+\frac{x_{1}^{2}}{y_{7}} \frac{\partial}{\partial x_{2}}\left(\frac{1}{x_{2}^{3}}\right) \\
& =2 x_{1} x_{2} y_{1}+x_{2} y_{2} y_{1}+\frac{x_{2}^{2}}{y_{1}}\left(-3 x_{2}^{-4}\right)^{3} \\
& \frac{\partial g}{\partial y_{2}}=\frac{\partial}{\partial y_{1}}\left(x_{1} x_{2}^{2} y_{1}+x_{2} y_{2}^{3}+x_{2} x_{2} y_{2} y_{1}+\frac{x_{1}^{2}}{x_{2}^{3} y_{2}}\right) \\
& =x_{1} x_{2}^{2}+\sigma+x_{2} x_{1} y_{2}+\frac{x_{1}^{2}}{x_{2}^{3}} \frac{\partial}{\partial y_{1}}\left(\frac{1}{y_{1}}\right) \\
& =x_{2} x_{2}^{2} t x_{2} x_{1} y_{2}+\frac{x_{1}^{3}}{x_{2}^{3}}\left(-y_{2}^{2}\right) \\
& \frac{\partial g}{\partial y_{2}}=\frac{\partial}{\partial y_{2}}\left(x_{1} x_{2}^{2} y_{1}+x_{2} y_{2}^{3}+x_{2} x_{2} y_{2} y_{2}+\frac{x_{1}^{2}}{x_{2}^{3} y_{2}}\right) \\
& =0+x_{1} \frac{\partial}{\partial y_{2}}\left(y_{2}^{3}\right)+x_{2} x_{1} y_{1}+0
\end{aligned}
$$

