EECS 16B Designing Information Devices and Systems II Fall 2021 Discussion Worksheet Discussion 0B

1. Linear Algebra Review

For the following matrices, find the following properties:

- i. What is the column space of the matrix?
- ii. What is the null space of the matrix?
- iii. What are the eigenvalues and corresponding eigenspaces for the matrix?

(a)
$$\begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix}$$

Answer:

- i. \mathbb{R}^2
- ii. {**0**}
- iii. $\lambda_1 = 2$ has the corresponding eigenspace: span

 $\lambda_2\,{=}\,3$ has the corresponding eigenspace: span

(b) $\begin{bmatrix} 1 & -2 \\ 2 & -4 \end{bmatrix}$

ii. span $\begin{pmatrix} 2\\1 \end{pmatrix}$

iii. $\lambda_1 = -3$ has the corresponding eigenspace: span

 $\lambda_2 = 0$ has the corresponding eigenspace: span $\begin{pmatrix} 2\\1 \end{bmatrix}$

1

2. KVL/KCL Review

Use Kirchhoff's Laws on the circuit below to find V_x in terms of V_{in} , R_1 , R_2 , R_3 .

Figure 1: Example Circuit

(a) Recall Node Voltage Analysis (NVA). Determine V_x by labeling the circuit and writing equations to solve a system of equations in node voltages.

Answer:

Figure 2

Applying KCL to the node at V_x , we get

$$\frac{V_{\rm in} - V_x}{R_1} - \frac{V_x - 0}{R_2} - \frac{V_x - 0}{R_3} = 0$$

Solving this equation for V_x yields

$$V_x = V_{\rm in} \frac{R_2 R_3}{R_1 R_2 + R_1 R_3 + R_2 R_3}$$

(b) In EECS16A, you learned you can simplify analysis by replacing series or parallel resistors with equivalents and memorizing common circuit design blocks. Determine V_x by leveraging resistor equivalence and recognition of a design block.

Answer: Observe that R_2 and R_3 are in parallel. We can replace them with a single resistor of value $R_{eq} = R_2 ||R_3 = \frac{R_2 R_3}{R_2 + R_3}$ in between the ground and the node with node voltage V_x .

Figure 3

This circuit is a voltage divider. We can determine V_{eq} as a function of the resistances and the source, then relate V_x to V_eq .

$$V_{eq} = \frac{R_{eq}}{R_1 + R_{eq}} V_{in}$$

$$V_{eq} = V_x - 0V$$

$$V_x = \frac{\frac{R_2 R_3}{R_2 + R_3}}{R_1 + \frac{R_2 R_3}{R_2 + R_3}} V_{in}$$

$$V_x = \frac{R_2 R_3}{R_1 R_2 + R_1 R_3 + R_2 R_3} V_{in}$$

(c) As a check, as $R_3 \to \infty$, what is V_x for what you found in (a) and (b)? The V_x 's of each part should approach the same value. What is the name we used for this type of circuit?

Answer: The expressions we show above for (a) and (b) are identical. However, if they do not appear identical due to equivalent algebraic expressions without equivalent simplification, the limit can be a way to verify that both solution methods inform us of the correct circuit behavior and are consistent with each other. As $R_3 \rightarrow \infty$, the R_1R_2 term on the denominator will become insignificant, simplifying our expression.

$$\lim_{R_3 \to \infty} V_x = \lim_{R_3 \to \infty} V_{\text{in}} \frac{R_2 R_3}{R_1 R_2 + R_1 R_3 + R_2 R_3}$$
$$= V_{\text{in}} \frac{R_2 R_3}{R_1 R_3 + R_2 R_3}$$
$$= V_{\text{in}} \frac{(R_2) R_3}{(R_1 + R_2) R_3}$$
$$= V_{\text{in}} \frac{R_2}{R_1 + R_2}$$

When $R_3 \to \infty$, it effectively becomes an open wire, which makes the rest of the circuit a voltage divider, or resistive divider.

3. Current Sources And Capacitors (The following problem has been adapted from EECS16A Fall 20 Disc 9A.)

Recall charge has units of Coulombs (C), and capacitance is measured in Farads (F) = $\frac{Coulomb}{Volt}$. It may also help to note metric prefix examples: $3 \mu F = 3 \times 10^{-6} F$.

Given the circuit below, find an expression for $v_{out}(t)$ in terms of I_s , C, V_0 , and t, where V_0 is the initial voltage across the capacitor at t = 0.

Then plot the function $v_{out}(t)$ over time on the graph below for the following conditions detailed below. Use the values $I_s = 1$ mA and $C = 2 \mu$ F.

- (a) Capacitor is initially uncharged $V_0 = 0$ at t = 0.
- (b) Capacitor has been charged with $V_0 = +1.5$ V at t = 0.
- (c) **Practice:** Swap this capacitor for one with half the capacitance $C = 1 \,\mu\text{F}$, which is initially uncharged $V_0 = 0$ at t = 0.

HINT: Recall the calculus identity $\int_a^b f'(x) dx = f(b) - f(a)$, where $f'(x) = \frac{df}{dx}$.

time (ms)

Answer:

The key here is to exploit the capacitor equation by taking its time-derivative

$$Q = C v_{out} \longrightarrow \frac{dQ}{dt} \equiv I_C = I_s = C \frac{dv_{out}}{dt}.$$

From here we can rearrange and show that

$$\frac{dv_{out}}{dt} = \frac{I_s}{C}$$

Thus the voltage has a constant slope! Our solution is

$$v_{out}(t) = V_0 + \left(\frac{I_s}{C}\right) \cdot t$$

To be more mathematically formal, we are solving a differential equation that happens to return a linear function for $v_{out}(t)$:

$$\frac{dv_{out}}{dt} = \frac{I_s}{C} \longrightarrow \int_0^t \frac{dv_{out}}{dt} dt \equiv v_{out}(t) - v_{out}(0) = \int_0^t \frac{I_s}{C} dt \equiv \frac{I_s}{C} \int_0^t 1 dt \equiv \frac{I_s}{C} t$$

Thus we arrive at the same statement as seen earlier $v_{out}(t) = v_{out}(0) + \left(\frac{I_s}{C}\right)t$.

From this stage we can compute the slope of $v_{out}(t)$ for parts (a) and (b) along with the slope for (c), which should be twice as large.

$$\frac{I_s}{C} = \frac{1 \text{mA}}{2 \mu \text{F}} = \frac{1000 \frac{\mu \text{C}}{\text{s}}}{2 \frac{\mu \text{C}}{\text{V}}} = 500 \frac{\text{V}}{\text{s}} = \left(\frac{1}{2}\right) \frac{\text{V}}{\text{ms}}$$

For part (c):

$$\frac{I_s}{C} = \frac{1 \text{mA}}{1 \mu \text{F}} = \frac{1000 \frac{\mu \text{C}}{\text{s}}}{1 \frac{\mu \text{C}}{\text{V}}} = 1000 \frac{\text{V}}{\text{s}} = 1 \frac{\text{V}}{\text{ms}}$$

When plotting, make sure to recall (a) and (c) start at the origin, while (b) has initially charged plates by $V_0 = 1.5V$. Results are shown below

Discussion 0B, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 5

Discussion 0B @ 2021-08-26 08:53:01-07:00

4. (Take-Home) Op-Amp Summer

Consider the following circuit (assume the op-amp is ideal):

Figure 4: Op-amp Summer

What is the output V_o in terms of V_1 and V_2 ? You may assume that R_1 , R_2 , and R_g are known. Answer:

Let I_{-} be the current flowing into the (-) terminal of the op-amp

$$I_{R_g} + I_{-} = I_{R_1} + I_{R_2}$$

$$I_{R_g} + 0V = I_{R_1} + I_{R_2}$$

$$\frac{0V - V_o}{R_g} + 0V = \frac{V_1 - 0V}{R_1} + \frac{V_2 - 0V}{R_2}$$

$$V_o = -\left(\frac{R_g}{R_1} \cdot V_1 + \frac{R_g}{R_2} \cdot V_2\right)$$