EECS 16B Designing Information Devices and Systems II
 Fall 2021 Discussion Worksheet Discussion 1A

For this discussion, Note 1 is helpful for background in transistors and RC circuits.

1. NAND Circuit

Let us consider a NAND logic gate. This circuit implements the boolean function $\overline{(A \cdot B)}$. The \cdot stands for the AND operation, and the stands for NOT; combining them, we get NAND!

Figure 1: NAND gate transistor-level implementation.
$V_{t n}$ and $V_{t p}$ are the threshold voltages for the NMOS and PMOS transistors, respectively. Assume that $V_{D D}>V_{t n}$ and $\left|V_{t p}\right|>0$.
(a) Label the gate, source, and drain nodes for the NMOS and PMOS transistors above.

Solution: In an NMOS, the terminal at the higher potential is always the drain, and the terminal at the lower potential is always the source. Therefore, the drains are at the top of N_{A} (connected to $V_{\text {out }}$) and the top of N_{B} (connected to N_{A}). The sources are at the bottom of N_{A} (connected to N_{B}) and the bottom of N_{B} (connected to ground). The gate terminal of N_{A} is connected to V_{A}; the gate of N_{B} is connected to V_{B}.
In a PMOS, the terminal at the higher potential is always the source, and the terminal at the lower potential is always the drain. Therefore, the source is at the top of P_{A} and P_{B} (connected to $V_{D D}$). The drain is at the bottom of P_{A} and P_{B} (connected to $V_{\text {out }}$). The gate terminal of P_{A} is connected to V_{A}; the gate of P_{B} is connected to V_{B}.
(b) If $V_{A}=V_{D D}$ and $V_{B}=V_{D D}$, which transistors act like open switches? Which transistors act like closed switches? What is $V_{\text {out }}$?

Solution: $\quad P_{A}$ and P_{B} are off (open switches). N_{B} and N_{A} are on (closed switches). $V_{\text {out }}=0 \mathrm{~V}$ because it is connected to ground through a closed circuit consisting of P_{A} and P_{B} (and detached from $V_{D D}$).
(c) If $V_{A}=0 V$ and $V_{B}=V_{D D}$, what is $V_{\text {out }}$?

Solution: P_{B} and N_{A} are off (open switches). P_{A} and N_{B} are on (closed switches). $V_{\text {out }}=V_{D D}$ because it is connected to $V_{D D}$ through a closed circuit consisting of P_{A} (and detached from ground, since both N_{A} and N_{B} must be closed for $V_{\text {out }}$ to be connected to ground).
(d) If $V_{A}=V_{D D}$ and $V_{B}=0 V$, what is $V_{\text {out }}$?

Solution: P_{A} and N_{B} are off (open switches). P_{B} and N_{A} are on (closed switches). But, since N_{B} is open, N_{A} being closed doesn't connect $V_{\text {out }}$ to ground. So, $V_{\text {out }}=V_{D D}$ because it is connected to $V_{D D}$ through a closed switch.
Note that with the simplest transistor model, one cannot to determine $V_{G S}$ for N_{A}, since we don't know the source voltage for that transistor. $V_{\text {out }}$ is still high, because regardless of whether N_{A} is on, there is an open (or very high resistance) between $V_{\text {out }}$ and ground while there is a short to $V_{D D}$.
(e) If $V_{A}=0 V$ and $V_{B}=0 V$, what is $V_{\text {out }}$?

Solution: N_{B} is off, creating an open circuit. P_{A} and P_{B} are on, creating a closed circuit. $V_{\text {out }}=V_{D D}$ because it is connected by closed circuit to $V_{D D}$.
Like above, the source of N_{A} has an ambigous value and we cannot determine whether N_{A} is on or off. However, this doesn't affect the output because the path to ground is an open (since N_{B} is definitely off, $V_{G S, N_{A}}=0 \leq V_{t n}$.
(f) Write out the truth table for this circuit.

V_{A}	V_{B}	$V_{\text {out }}$
0	0	
0	$V_{D D}$	
$V_{D D}$	0	
$V_{D D}$	$V_{D D}$	

Solution:

V_{A}	V_{B}	$V_{\text {out }}$
0	0	$V_{D D}$
0	$V_{D D}$	$V_{D D}$
$V_{D D}$	0	$V_{D D}$
$V_{D D}$	$V_{D D}$	0

2. RC Circuits - Part I

In this problem, we will find the voltage across a capacitor over time in an RC circuit. In this part, we set up our problem by first defining four functions over time: $I(t)$ is the current at time $t, V(t)$ is the voltage across the circuit at time $t, V_{R}(t)$ is the voltage across the resistor at time t, and $V_{C}(t)$ is the voltage across the capacitor at time t.
Recall from 16A that the voltage across a resistor is defined as $V_{R}=R I_{R}$ where I_{R} is the current across the resistor. Also, recall that the voltage across a capacitor is defined as $V_{C}=\frac{Q}{C}$ where Q is the charge across the capacitor.

Figure 2: Example Circuit
(a) First, find an equation that relates the current across the capacitor $I(t)$ with the voltage across the capacitor $V_{C}(t)$.
Solution: We start from the $Q-V$ relationship of the capacitor:

$$
Q(t)=C V_{C}(t) .
$$

Differentiating $V_{C}(t)=\frac{Q(t)}{C}$ in terms of t, we get

$$
\frac{d V_{C}(t)}{d t}=\frac{d Q(t)}{d t} \frac{1}{C}
$$

By definition, the change in charge is the current across the capacitor, so

$$
\begin{equation*}
\frac{d}{d t} V_{C}(t)=I(t) \frac{1}{C} \tag{1}
\end{equation*}
$$

(b) Write a system of equations that relates the functions $I(t), V_{C}(t)$, and $V(t)$.

Solution: From KCL, we have

$$
\begin{gather*}
\frac{V(t)-V_{C}(t)}{R}-I(t)=0 \\
R I(t)+V_{C}(t)=V(t) \tag{2}
\end{gather*}
$$

(c) So far, we have two relations between $\mathrm{I}(\mathrm{t})$ and $V_{C}(t)$. To solve this system of equations, we can remove $I(t)$ from the equation using what we found in part (a). Rewrite the previous equation in part (b) in the form of a differential equation.

Solution:

From part (a), we have

$$
I(t)=\frac{d V_{C}(t)}{d t} C
$$

Substituting this into Equation 2 gives us

$$
R C \frac{d V_{C}(t)}{d t}+V_{C}(t)=V(t)
$$

Contributors:

- Kumar Krishna Agrawal.
- Lev Tauz.
- Varun Mishra.
- Regina Eckert.

