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EECS 16B Designing Information Devices and Systems II
Fall 2021 Discussion Worksheet Discussion 1B
For this discussion, Note 1 is helpful for the differential equations, and Note j covers the complex numbers
fundamentals.

1. RC Circuits: Solving the Differential Equations
Recall that in the last discussion, we were tasked with analyzing an example RC circuit (in fig. 1) and
using element equations (governing equations for resistors and capacitors) to formulate a differential equa-
tion. This equation describes the time-varying behavior of this circuit. Specifically, we had the following
differential equation:

RC
dVC(t)

dt
+ VC(t) = V (t) (1)
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Figure 1: Sample RC Circuit

Our goal is to now solve this differential equation for the voltage across the capacitor, VC(t).
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Figure 2: RC Circuit for part (a). Note that the voltage source has been turned off (0V) for this subpart, and the initial
voltage on the capacitor is VDD.

(a) Let’s suppose that at t = 0, the capacitor is charged to a voltage VDD (VC(0) = VDD). Let’s also
assume that V (t) = 0 for all t ≥ 0 (voltage source is turned off). Solve the differential equation for
VC(t) for t ≥ 0.

Solution: Because V (t) = 0, the differential equation that we derived in the previous discussion
(given in eq. (1)) simplifies to

RC
dVC(t)

dt
+ VC(t) = 0 (2)
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Dividing both sides of the equation by RC, we arrive at

dVC(t)

dt
+

1

RC
VC(t) = 0 (3)

Moving the second term to the right-hand side, we have

dVC(t)

dt
= − 1

RC
VC(t) (4)

From the form of equation, we are told that we are looking for some function VC(t) such that when
we take its derivative, we get the same function VC(t) multiplied by a scalar − 1

RC .
Because the derivative of the function is equal to a scaled version of the function itself, we believe that
the solution VC(t) might be of the form Aebt, where A and b are both constants.
Following the steps outlined in lecture, we must first solve for the scalar A using the initial condition.
Here, we have

VDD = VC(0) (5)

= Aeb(0) (6)

= A (7)

Now that we know the value of A, we can write that VC(t) = VDDe
bt. The last task is to find b. We

have already used the initial condition, so we must be able to find b from the differential equation.
Plugging in our expression for VC(t) into the differential equation, we find

dVC(t)

dt
= − 1

RC
VC(t)

d

dt
VDDe

bt = bVDDe
bt = bVC(t)

= − 1

RC
VC(t)

=⇒ b = − 1

RC
.

In this case, we see the value of the remaining constant b = − 1
RC , and our overall solution is

VC(t) = VDDe
− 1
RC

t (8)
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Figure 3: Circuit for part (b)
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(b) Now, let’s suppose that we start with an uncharged capacitor VC(0) = 0. We apply some constant
voltage V (t) = VDD across the circuit for all t ≥ 0. Solve the differential equation for VC(t) for
t ≥ 0.

Solution: Substituting V (t) = VDD into our solution from eq. (1):

RC
dVC(t)

dt
+ VC(t) = VDD (9)

We want to arrange this equation to be in a form that we know how to solve:

d

dt
VC(t) =

VDD − VC(t)
RC

(10)

This is not quite in the form we have seen before, since the term on the right is not equal to the term
being differentiated. There is an additional (constant) term. In general, we don’t like constants in the
differential equation. The derivative of a constant is zero, so we can wrap the constant into the function
being differentiated using a change of variables, like so. Importantly, this change of variables allows
us to transform a problem for which we don’t know the exact solution into a form for which we do
have a solution.
Let’s define a new variable ṼC(t) = VC(t) − VDD. Note that dṼC(t)

dt = dVC(t)
dt , and that ṼC(0) =

VC(0)− VDD = −VDD. We can substitute these into our differential equation and obtain

RC
dVC(t)

dt
+ VC(t)− VDD = 0 (11)

RC
dṼC(t)

dt
+ ṼC(t) = 0 (12)

dṼC(t)

dt
= − 1

RC
ṼC(t) (13)

In this equation, we have now removed VDD from the left hand because of how we defined ṼC(t). And
so we get back almost the same differential equation as in the previous part, this time for ṼC(t), with
the only difference being that the initial condition changed! And so, we can use that solution to get

ṼC(t) = ṼC(0)e
− 1
RC

t = −VDDe−
1
RC

t. (14)

Finally, we need the solution in terms of VC(t) and not ṼC(t), so we back-substitute:

VC(t) = VDD + ṼC(t)

= VDD − VDDe−
1
RC

t

= VDD(1− e−
1
RC

t).

(c) We now want to combine the principles from the previous two subparts to understand the voltage wave-
form when a switch occurs at some time t. Specifically, suppose that at t = 0, V (t) = 0V, VC(0) =
VDD. Then, at some t = tswitch, the voltage source is turned on V (t) = VDD for t ≥ tswitch. We want
to find the equation for the overall capacitor voltage as a function of time (for times before and after
tswitch).

Solution: There is a critical realization to make here; the final condition of the first curve (that is,
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the value of VC(t) at t = tswitch) serves as the initial condition for the second part of the curve. This
second phase begins the moment the switch happens (instantaneously). Since we have a general way
to find the solution for each phase individually given an initial condition, we can combine the results.
We proceed by first finding the solution to the first curve (for all time t ≥ 0, not worrying about the
switching for now). Noticing this is the same as the answer to part (a), so we write that:

VC,1(t) = VDDe
− 1
RC

t (15)

Now, the "stopping" point of this curve (that is, the point when this waveform stops and VC(t) is gov-
erned by the second phase’s waveform) is at t = tswitch. Specifically, at VC(tswitch) = VDDe

− tswitch
RC .

This is a constant value; every term in this equation is known, and the time-dependence has been
removed by plugging in the specific time we want to evaluate the first solution at.
We are now equipped to deal with the second (and last) part of this problem; finding out how the
capacitor voltage changes for t ≥ tswitch. At that point, we will have a piecewise equation (2 parts)
that describes the voltage for all t ≥ 0. Specifically, our initial condition for the second waveform is
VC(tswitch) = VDDe

− tswitch
RC . Then, the solution we have for a generic initial condition, from part (b),

can be applied.
The second part of the problem becomes easier to solve independently when we consider the following;
in reality, the initial condition on time axis t occurs at tswitch, and this is where VC(tswitch) will be used.
However, we can also perform a change-of-variables on the time axis in order to create a new axis, t′,
which has value t′ = 0 at t = tswitch. We are effectively re-centering the axis in order to re-use as
much of the solution to (b) as we can.
Applying this principle, we find that as before, ṼC(0) = VC(0)−VDD. Substituting the constant value
that we know VC(0) has at t′ = 0 (t = tswitch), we see that ṼC(0) = VDDe

− tswitch
RC − VDD. We will

not worry about factoring out VDD for now.
Next, we apply the rest of the solution that we had in (b), while making substitutions both for the
time-axis change (t′ = t− tswitch) and the substitution of ṼC(t′) for VC(t′):

ṼC(t
′) =

(
VDDe

− tswitch
RC − VDD

)
e−

t′
RC (16)

VC(t
′) = VDD +

(
VDDe

− tswitch
RC − VDD

)
e−

t′
RC (17)

VC(t
′) = VDD + VDDe

− tswitch
RC e−

t′
RC − VDDe−

t′
RC (18)

VC(t) = VDD + VDDe
− tswitch

RC e−
t−tswitch

RC − VDDe−
t−tswitch

RC (19)

We ultimately find that:

VC,2(t) = VDD + VDDe
− 1
RC

t − VDDe
−t+tswitch

RC (20)

= VDD

(
1 + e−

1
RC

t − e
−t+tswitch

RC

)
(21)

And that’s how to solve what happens when an RC circuit switches!
See a visual demo here: https://www.desmos.com/calculator/gvjm36oo6j
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2. Complex Algebra (Review)

(a) Express the following values in polar forms: −1, j, −j,
√
j, and

√
−j. Recall j2 = −1, and the com-

plex conjugate of a complex number is denoted with a bar over the variable. The complex conjugate is
defined as follows: for a complex number z = x+ jy, the complex conjugate z = x− jy.

Solution: Here, we review some basic properties of complex numbers and its rectangular and polar
form: z = x+ jy = |z|ejθ, where |z| =

√
zz =

√
x2 + y2 and ]z = θ = atan2 (y, x). We can also

write x = |z| cos(θ), y = |z| sin(θ).
A complex number can be represented in the following forms:

z = a+ jb = r cos(θ) + jr sin(θ) = rejθ, (22)

where, r =
√
a2 + b2,]z = atan2(b, a) and a, b are real numbers.

−1 = j2 = ejπ = e−jπ (23)

j = ej
π
2 =
√
−1 (24)

−j = −ej
π
2 =−j

π
2 (25)√

j = (ej
π
2 )

1
2 = ej

π
4 =

1 + j√
2

(26)√
−j = (e−j

π
2 )

1
2 = e−j

π
4 =

1− j√
2

(27)

(b) Represent sin(θ) and cos(θ) using complex exponentials. (Hint: Use Euler’s identity ejθ = cos(θ) +
j sin(θ).)

Solution: Note that we can use the fact that cos(x) is an even function, and sin(x) is an odd function.
This gives us that:

ejθ = cos(θ) + j sin(θ)

e−jθ = cos(−θ) + j sin(−θ)
= cos(θ)− j sin(θ)

Solving this system of equations for cos(θ) and sin(θ) gives:

sin(θ) =
ejθ − e−jθ

2j
cos(θ) =

ejθ + e−jθ

2

For the next parts, let a = 1− j
√
3 and b =

√
3 + j.

(c) Show the number a in complex plane, marking the distance from origin and angle with real axis.

Solution: The location of a in the complex plane is shown in Figure 4. The only two pieces of
information we need are the magnitude and the phase, which is the polar coordinates interpretation.
We could also use the (perhaps more familiar) x and y Cartesian coordinates.

(d) Show that multiplying a with j is equivalent to rotating the magnitude of the complex number by π
2 or

90◦ in the complex plane.
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Re{z}

Im{z}

a = 1− j
√
3 = 2e−j

π
3

1

−
√
3

]a = atan2
(
−
√
3, 1
)
= −π

3

ja =
√
3 + j = 2ej

π
6

√
3

1

γ = ]a+ π
2 = π

6

|a| =
√

12 +
√
3
2
= 2

Figure 4: Complex numbers a and its rotated version b represented as vectors in the complex plane.

Solution: Multiplying a by j:

ja = ejπ/2 · 2e−jπ/3 = 2ejπ/6 =
√
3 + j

The rotation is demonstrated in the same complex plane plot (Figure 4), with a new angle γ = ]a+ π
2 .

(e) (Practice) For complex number z = x + jy show that |z| =
√
zz, where z is the complex conjugate

of z.

Solution: We can follow the definition of complex conjugate and magnitude:
√
zz =

√
(x+ jy)(x− jy) =

√
x2 + y2 = |z| (28)

(f) (Practice) Express a and b in polar form.

Solution: Following the definitions in part a):

|a| = 2

|b| = 2

]a = −π
3

]b =
π

6

Hence:
a = 2e−j

π
3 b = 2ej

π
6

(g) (Practice) Find ab, ab, ab , a+ a, a− a, ab, ab, and
√
b.
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Solution: We can evaluate these sequentially using the rules of complex algebra:

ab = 4 · e−j
π
6 = 2

√
3− 2j

ab = 4 · e−j
π
2 = −4j

a

b
= e−j

π
2 = −j

a+ a = 2

a− a = −2j
√
3

ab = 2
√
3 + 2j

ab = (1 + j
√
3)(
√
3− j) =

√
3 +
√
3 + j(3− 1) = 2

√
3 + 2j

√
b =
√
2ej

π
12

Note the following: a+a is a purely real number. a−a is a purely imaginary number. And, ab = ab.
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