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EECS 16B Designing Information Devices and Systems II
Fall 2021 Discussion Worksheet Discussion 4B
The following notes are useful for this discussion: Note 5

1. Phasor Analysis

Any sinusoidal time-varying function x(t), representing a voltage or a current, can be expressed in the form

x(t) = X̃ejωt + X̃e−jωt, (1)

where X̃ is a time-independent (possibly) complex quantity called the phasor representation of x(t) (recall
that z denotes the complex conjugate of z. The complex conjugate of a complex number z = a + jb is
z = a− jb). Note that:

(a) X̃ and X̃ are complex conjugates of each other.

(b) ejωt and e−jωt are complex conjugates of each other.

(c) X̃ ejωt and X̃ e−jωt are also complex conjugates of each other.

Note: We define the phasor corresponding to x(t) as the coefficient of ejωt in eq. (1). Other resources (such
as some past iterations of this class) define it slightly differently; the definitions differ by a factor of 1

2 . Some
reasons for competing definitions are discussed in Note 5. Although the definitions in general lead to the
same answers, be careful to use our class’ definition and not get tripped up. For example, if we ask about
the magnitude of the phasor, you wouldn’t want to be off by a constant!

The phasor analysis method consists of five steps. The steps below are phrased in terms of any general
circuit, but our goal is to apply these steps to the circuit we’re given. Specifically, consider the RC circuit in
fig. 1.

The voltage source is given by the sinusoid

vS(t) = 12 sin

(
ωt− π

4

)
, (2)

with ω = 1× 103 rad
s , R =

√
3 kΩ, and C = 1 µF.

+

−
vS(t)

R

+ −
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Figure 1
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We seek to obtain a solution for i(t) with the sinusoidal voltage source1 vS(t).

(a) Step 1: Write sources as exponentials: X̃ejωt + X̃e−jωt.
All voltages and currents with known sinusoidal functions should be expressed in the standard expo-
nential format. Convert vS(t) into a exponential and write down its phasor representation ṼS .
Note that vS(t) is given in terms of a sine wave, not a cosine wave.

Solution:

vS(t) = 12 sin

(
ωt− π

4

)
= 12

(
ej(ωt−π/4)

2j
− e−j(ωt−π/4)

2j

)

= 12

(
e−j(π/4)

2j
ejωt − ej(π/4)

2j
e−jωt

)

= −j 12

(
e−j(π/4)

2
ejωt − ej(π/4)

2
e−jωt

)

= 12e−j
π
2

(
e−j(π/4)

2
ejωt +

ejπej(π/4)

2
e−jωt

)
= 6e−j(3π/4)ejωt + 6ej(3π/4)e−jωt

= 6e−j(3π/4)ejωt + 6e−j(3π/4)e−jωt

= ṼSejωt + Ṽ se
−jωt

From the problem statement and pattern matching, we can extract the phasor representation as the
coefficient of ejωt:

ṼS = 6e−j
3π
4 (3)

(b) Step 2: Transform circuits to phasor domain. The voltage source vS(t) is represented by its phasor
ṼS . Similarly, vR(t) has phasor ṼR, and vC(t) has phasor ṼC .
The current i(t) is related to its phasor counterpart Ĩ by

i(t) = Ĩejωt + Ĩe−jωt. (4)

We redraw the circuit in phasor domain as in fig. 2. Recall that the impedances of the resistor, ZR(jω),
and capacitor, ZC(jω), are as given below. We sometimes also refer to this as the "phasor representa-
tion" of R and C.

ZR(jω) = R (5)

ZC(jω) =
1

jωC
(6)

1The voltage source symbol here has a squiggly, not +/− . This is the symbol denoting a time-dependent, sinusoidal source;
we have previously had input voltages dependent on time but in a piecewise-constant way (turns on at some time t). These do not
have the mini-sine inside the source symbol.
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+

−ṼS

ZR(jω)
Ĩ

ZC(jω)

ṼR

ṼC

Figure 2: Circuit in “phasor domain”

Using the numbers given in the problem statement (ω = 1× 103 rad
s , R =

√
3 kΩ, and C = 1 µF),

compute the numerical values of these impedances.
Solution:

ZR(jω) =
√

3 · 103 Ω (7)

ZC(jω) =
1

jωC
(8)

=
1

j ·
(
1 · 103

)
·
(
1 · 10−6

) (9)

=
1000

j
Ω (10)

= −j1000Ω (11)

(c) [Practice] As an intermediate step to use in the next subpart, show that the fact that the first equation
holds for all t implies the second equation:

vS(t) = vR(t) + vC(t) (12)

ṼS = ṼR + ṼC (13)

Solution: This subpart shows that equations that derive from NVA hold in the phasor domain just as
they hold in the time domain for circuits like this one. The details presented below are also in Note 5.
For this circuit, we can show that the following equation holds by applying NVA to the original circuit
(you may recognize this as KVL):

vS(t) = vR(t) + vC(t), (14)

where we have denoted the voltage across the resistor as vR(t). If we expand all these quantities using
phasors (using eq. (1)), we get

ṼSejωt + Ṽ Se−jωt︸ ︷︷ ︸
vS(t)

= ṼRejωt + Ṽ Re−jωt︸ ︷︷ ︸
vR(t)

+ ṼCejωt + Ṽ Ce−jωt︸ ︷︷ ︸
vC(t)

(15)

Collecting together all the ejωt terms and all the e−jωt terms, the above equation can be rewritten as(
ṼS − ṼR − ṼC

)
ejωt +

(
ṼS − ṼR − ṼC

)
e−jωt = 0. (16)
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If ω 6= 0,2 it can be shown3 that both of the coefficients of ejωt and e−jωt in the above equation must
be equal to 0 for this equation to hold. That is:

ṼS − ṼR − ṼC = 0, and

ṼS − ṼR − ṼC = 0.
(17)

Both of the equations above have the same meaning, i.e. , ṼS − ṼR − ṼC = 0 or

ṼS = ṼR + ṼC . (18)

This is exactly the same equation as given by vS(t) = vR(t) + vC(t), but using phasors. In the same
way, you can show that KCL is also obeyed by phasors.
This conclusion implies that the standard rules for putting together circuit equations using NVA work
identically with phasors as with time-varying notation. Now that we’ve shown that the phasor repre-
sentations (i.e. , Ĩ and Ṽ ) of our circuit is equivalent to the time-varying representation (i.e. , i(t) and
v(t)), in the future we can write any NVA equations in phasor form directly.

(d) Step 3: Cast the branch and element equations in the phasor domain.
The previous subpart gave us a concrete relation we can use in the phasor domain to relate the voltages
of the circuit elements. Specifically, we know that ṼS = ṼR + ṼC .
Now, we must substitute in the voltage phasors corresponding to these terms, using the element
impedances given in Step 2. At this point, feel free to leave the terms symbolic; in the next part, we
will substitute in numbers.

Solution: The voltage-current relationships of elements should be in phasor form. The general
formula (which holds for resistors, capacitors, and inductors) is as follows:

Velem = Ielem · Zelem(jω). (19)

We can therefore write that, for a resistor:

ṼR = ĨRZR(jω) (20)

ṼR = ĨR (21)

For a capacitor,

ṼC = ĨCZC(jω) (22)

ṼC = ĨC
1

jωC
(23)

We can apply what we’ve found above to write the circuit in the phasor domain, starting from the
given voltage equation (and noting that there’s a single current Ĩ that flows through both R and C, so
ĨR ≡ ĨC ≡ Ĩ):

ṼS = ṼR + ṼC (24)

6e−j
3π
4 = ĨRZR(jω) + ĨCZC(jω) (25)

2Try working out the ω = 0 case by yourself! It’s even easier.
3This can be shown because the functions ejωt and e−jωt are linearly independent.
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=⇒ 6e−j
3π
4 = ĨR+ Ĩ

1

jωC
(26)

=⇒ 6e−j
3π
4 = Ĩ

(
R+

1

jωC

)
(27)

(e) Step 4: Solve for unknown variables
Solve the equation you derived in Step 3 for Ĩ and ṼC . What is the polar form of Ĩ and ṼC? The
polar form is given by Aejθ, where A is a positive real number.
Hints:

•
√
3
2 −

j
2 = e−j

π
6

Solution: Many of the simplifications here stem from results derived in Note j.

6e−j
3π
4 = Ĩ

(
R+

1

jωC

)
(28)

=⇒ Ĩ =
6e−j

3π
4

R+ 1
jωC

(29)

ṼC = ĨZC (30)

To derive the polar form, we plug in for the values of the impedances as solved for in Step 2, and then
simplify. Since the voltage depends on the current, we’ll solve for the current phasor first:

Ĩ =
6e−j

3π
4

R+ 1
jωC

=
6e−j

3π
4

√
3 · 1000− j1000

(31)

=⇒
∣∣∣Ĩ∣∣∣ =

∣∣∣6e−j
3π
4

∣∣∣∣∣∣√3 · 1000− j1000
∣∣∣ (32)

=
6√√

3
2 · 10002 + 10002

(33)

=
6√

3 · 10002 + 10002
=

6√
4 · 106

=
6

2000
(34)

= 3 · 10−3A (35)

We can similarly derive the phase of Ĩ:

]Ĩ = ]6e−j
3π
4 − ]

(√
3 · 1000− j1000

)
(36)

= −3π

4
− ]atan2

(
−1000,

√
3 · 1000

)
(37)

= −3π

4
− ]atan2

(
−1,
√

3
)

(38)

= −3π

4
+
π

6
(39)

= −7π

12
(40)
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Putting the two elements of the polar form together, we have that:

Ĩ =
∣∣∣Ĩ∣∣∣ ej]Ĩ (41)

= 3 · 10−3e−j
7π
12 A (42)

= 3e−j
7π
12 mA (43)

For the voltage, we now have:

ṼC = ĨZC(jω) (44)

=⇒
∣∣∣ṼC∣∣∣ =

∣∣∣Ĩ∣∣∣∣∣ZC(jω)
∣∣ ,]ṼC = ]Ĩ + ]ZC(jω) (45)

The magnitude first is: ∣∣∣ṼC∣∣∣ =
∣∣∣Ĩ∣∣∣∣∣ZC(jω)

∣∣ (46)∣∣∣ṼC∣∣∣ =
∣∣∣Ĩ∣∣∣|−j1000| (47)

= 3 · 10−3 · 1000 (48)

= 3 (49)

Now, the phase:

]ṼC = ]Ĩ + ]ZC jω) (50)

= −7π

12
− π

2
(51)

= −13π

12
≡ 11π

12
(52)

So, we have that:

ṼC =
∣∣∣ṼC∣∣∣ ej]ṼC (53)

= 3e−j
13π
12 V (54)

(f) Step 5: Transform solutions back to time domain
To return to time domain, we apply the relation between a sinusoidal function and its phasor counter-
part. What is i(t) and vC(t)? What is the phase difference between i(t) and vC(t)?
Solution:

i(t) = Ĩejωt + Ĩe−jωt = 3e−j
7π
12 ejωt + 3ej

7π
12 e−jωt = 6 cos

(
ωt− 7π

12

)
mA (55)

vC(t) = ṼCejωt + ṼCe−jωt = 3e−j
13π
12 ejωt + 3ej

13π
12 e−jωt = 6 cos

(
ωt− 13π

12

)
V (56)

The phase difference between i(t) and vC(t) is ]Ĩ − ]ṼC = −7π
12 −

(
−13π

12

)
= π

2 .

(g) Now, suppose that instead of wherever we analyzed the phasor as X̃ (the coefficient associated with
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the ejωt term), we had instead selected to work with X̃ , or we solved using both X̃ and X̃ . How would
our answer or problem-solving procedure have changed?
Solution: All of our answers would have come out to be the exact same, due to the complex
cojugacy inherent in the phasor representation. Specifically, we only need a single term/coefficient to
completely analyze a circuit in the phasor domain, and this is only possible because of the complex
conjugacy (which manifests itself a result of how our circuit is operating with real quantities, like a
sine wave input.)
If we wanted, we could keep track of just the conjugate, or even perform calculations for both X̃
and X̃ . However, due to the complex conjugacy, the relationship between these variables is known
definitively, and we therefore do not lose information by dealing with only 1 term. This is what allows
us to take the more streamlined approach.
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2. Inductor Impedance

Given the voltage-current relationship of an inductor v(t) = Ldi(t)
dt , we want to show that its complex

impedance is ZL(jω) = jωL. We will perform this analysis in steps.

A sample inductor circuit is in fig. 3.

i(t)

L

−

+

vL(t)

Figure 3: A simple inductor circuit.

(a) Suppose that the input current source in fig. 3 has value i(t) = I0e
st, where I0 is some (not necessarily

real) constant. What is the corresponding s-phasor for the current?
Solution: By definition, the s-phasor of a time-domain signal is the coefficient of the time-dependent
exponential. Here, since our input is i(t) = I0e

st, the phasor Ĩ = I0.

(b) Now, using the governing voltage-current equation for an inductor, derive the time-domain inductor
voltage using the current expression and solve for the corresponding voltage s-phasor.
Solution: By the inductor equation,

vL(t) = L
di(t)

dt
(57)

= L
d

dt

(
I0e

st
)

(58)

= I0Lse
st (59)

Noting again that the phasor of a time-dependent term is the coefficient of the time-dependent expo-
nential, we find that vL(t) has the phasor

ṼL = sLI0. (60)

(c) Using the voltage and current s-phasors, solve for the s-impedance of the inductor ZL(s). (This is
the ratio between these phasor quantities).

Solution: The impedance of an inductor is an abstraction to model the inductor as a resistor in the
phasor domain. Specifically, just as we take the ratio of VR to IR to find a resistor’s value, we perform
the analogous operation in the phasor domain for the inductor. This impedance is denoted ZL(s) for
some complex number s.

ZL(s) =
Ṽ

Ĩ
= sL (61)

Note that the impedance here is a function of s, but not of I0. That is, the behavior of the element is not
dependent on the specific magnitude of the current, it only depends on the input current’s frequency
(captured in s).
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(d) Now, suppose that our current source value was instead i(t) = I0 cos(ωt+ φ), where ω is the fre-
quency of the cosine wave and φ is the phase-offset. φ = 0 corresponds to the standard cosine centered
at t = 0.
Using Euler’s formula, represent i(t) as the sum of two complex exponentials. Using this, Find
the new phasor Ĩ associated with the complex exponential ejωt.

Solution: We can apply Euler’s directly to the given equation, noting that cos(x) = 1
2

(
ejx + e−jx

)
.

i(t) = I0 cos(ωt+ φ) (62)

= I0
1

2

(
ej(ωt+φ) + e−j(ωt+φ)

)
(63)

=
I0
2

(
ejωtejφ + e−jωte−jφ

)
(64)

=

(
I0
2

ejφ
)

ejωt +

(
I0
2

e−jφ
)

e−jωt (65)

So, i(t) has the phasor

Ĩ =
I0
2

ejφ. (66)

(e) Same as before, use i(t) to derive v(t) and find the new phasor Ṽ associated with the complex
exponential ejωt.
Solution: Differentiating and simplifying,

v(t) = L
di(t)

dt
(67)

= L
d

dt

((
I0
2

ejφ
)

ejωt +

(
I0
2

e−jφ
)

e−jωt

)
(68)

=

(
L
I0
2

ejφjω

)
ejωt +

(
−LI0

2
e−jφjω

)
e−jωt (69)

From the coefficient of ejωt (and using eq. (1)), we find that:

Ṽ =
I0
2

jωLejφ (70)

(f) Once again, using the voltage and current phasors, solve for the impedance of the inductor ZL(s).
Is this the same quantity that we found in the earlier subpart, as expected?

Solution: Indeed, we compute that ZL(s) = Ṽ

Ĩ
= jωL, which matches with our previous result. We

must note also that here, s = jω by definition.
Now, let’s see how we could have used the first result (for a single complex exponential) and taken
a shortcut for the generic sinusoid using superposition. By pattern-matching the expansion of i(t) =

I0
1
2

(
ej(ωt+φ) + e−j(ωt+φ)

)
to the single s-exponential at the very start, we find that there are 2 com-

ponents:

i. Component 1: i1(t) =
(
I0
2 ejφ

)
ejωt
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ii. Component 2: i2(t) =
(
I0
2 e−jφ

)
e−jωt

(g) Now, evaluate your expression for ZL(s) (from the single exponential case) at s = jω, and s =
−jω. What do you notice?

Solution: We can see that:

ZL(s)
∣∣
s=jω

= jωL (71)

ZL(s)
∣∣
s=−jω = −jωL (72)

These answers are complex conjugates, and the s-values correspond to the 2 exponential components
present in our generic cosine wave from item (d).

(h) Using the current components given above, solve for the voltage phasors Ṽ1 and Ṽ2 as the product
of the associated current phasors Ĩ1 and Ĩ2, and the corresponding impedances. What do you
notice about the current phasors? What do you notice about the voltage phasors? How can we explain
the relationships between these results?

Solution: The current phasor associated with the first current component, i1(t), is Ĩ1 = I0
2 ejφ. The

corresponding voltage is v1(t), and since our calculated impedance was ZL(jω) = jωL, the voltage
phasor is then Ṽ1 = jωLĨ1.
Similarly, we can compute that Ĩ2 = I0

2 e−jφ and Ṽ2 = −jωLĨ2.
Going forward, when solving such problems with a sinudoisal voltage or current input, there’s a key
shortcut we can take. The above analysis allows us to apply the shortcut while maintaining under-
standing of what’s actually happening.

We can see that Ĩ2 = Ĩ1 (that is, the current phasors are complex conjugates). This will always be
true for real inputs signals, like the generic cosine we had. Similarly, the impedances ZL(jω) = jωL
and ZL(−jω) = −jωL are also complex conjugates, and the combination of these ultimately means

that Ṽ2 = Ṽ1 by the properties of complex numbers. Therefore, we don’t need to explicitly compute
both Ṽ1 and Ṽ2; once we calculate one, we can conjugate it to arrive at the other.
Fundamentally, this is why even a sinudoidal signal which consists of two separate complex expo-
nentials can be represented with a single phasor quantity. Only one piece of information is required
(and this is the coefficient of the ejωt term) because the coefficient of the e−jωt term will certainly be
the complex conjugate for real signals. This is the same takeaway as presented at the end of the first
problem.
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