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EECS 16B Designing Information Devices and Systems II
Fall 2021 Discussion Worksheet Discussion 5B
The following notes are useful for this discussion: Note 7 on Transfer Function Plots and Note 8 on Bode
Plots.

1. Plotting and Combining Transfer Functions
Recall that any transfer function can be written in polar form as

H(jω) =
∣∣H(jω)

∣∣ ej]H(jω) (1)

where
∣∣H(jω)

∣∣ and ]H(jω) are real functions of ω giving the magnitude and phase of the transfer function,
respectively. To see how transfer functions combine, consider two H1(jω) and H2(jω).

H1(jω) =
∣∣H1(jω)

∣∣ ej]H1(jω) (2)

H2(jω) =
∣∣H2(jω)

∣∣ ej]H2(jω) (3)

H1(jω) ·H2(jω) = |H1| ej]H1 |H2| ej]H2 = |H1||H2| ej(]H1+]H2) (4)

H1(jω)

H2(jω)
=
|H1| ej]H1

|H2| ej]H2
=
|H1|
|H2|

ej(]H1−]H2) (5)

As you can see, magnitudes of transfer functions multiply and divide while the phases add and subtract.

In this problem we will plot the transfer function of fig. 1a.
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(a) An LR filter in the “time-domain”.

−
+ Ṽin(jω)

ZL(jω)

ZR(jω)

+

−

Ṽout(jω)

(b) An LR filter in the “phasor-domain”.

Figure 1: Circuit schematic of LR filter in both domains.

(a) First, solve for H(jω). Then, write expressions for
∣∣H(jω)

∣∣ and ]H(jω). For now, you can keep it
in terms of R and L.

Solution: We use the voltage divider formula in the phasor domain:

Ṽout =
ZR

ZR + ZL
Ṽin. (6)

Substituting in the impedance formulas we know, we find that:

H(jω) =
Ṽout

Ṽin
=

R

R+ jωL
(7)
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=
1

1 + jω L
R

. (8)

The magnitude can be found by dividing the magnitudes of the numerator and denominator:

∣∣H(jω)
∣∣ =

|1|∣∣∣1 + jω L
R

∣∣∣ (9)

=
1√

1 + ω2 L2

R2

(10)

Similarly the phase can be found by subtracting the phase of the denominator from that of the numer-
ator:

]H(jω) = ]1− ]

(
1 + jω

L

R

)
(11)

= 0− atan2

(
ω
L

R
, 1

)
(12)

(b) What is the cutoff frequency for this circuit? Mark it on the log-log plots of part item (c) with a
vertical line. Note that the values of the circuit elements are given in fig. 2a.
Recall that a transfer function of the form H(jω) = k

1+jω/ωc
is defined to have a cutoff frequency of

ωc.

Solution: In this case, it will be the inverse of the LR time constant, that is

ωc =
R

L
. (13)

For our given values, that’s

ωc =
100 Ω

100 µH
= 1× 106

rad

s
. (14)

(c) Sketch plots of the magnitude and phase of this transfer function. We have provided a table with
the transfer function evaluated at a few representative points around the cutoff frequency to help you
plot the transfer function by hand. You can join these points with a curve to arrive at a reasonable
estimation of the transfer function.

ω 104 105 106 107 108∣∣H(jω)
∣∣ 1.00 0.995 0.707 0.100 0.01

]H(jω) −0.6◦ −6◦ −45◦ −84◦ −89◦

104 105 106 107 108
10−3
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10−1

100

101

ω

∣ ∣ H(j
ω

)∣ ∣

Plot of
∣∣H(jω)

∣∣ (for you to draw).
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Plot of ]H(jω) (for you to draw).

Solution: The final drawings should look like this:
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Plot of
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Plot of ]H(jω)
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(d) Now suppose we want to compose the filter from fig. 2a with the filter from earlier (fig. 1a). You
may recognize the first filter from the previous discussion. Use R = 1 kΩ and C = 1 µF for the
RC filter. We can compose two circuits by connecting the output of the first circuit into the second
circuit, through a unity gain buffer. For this problem, the transfer function of the LR filter from this
worksheet fig. 1a is H1, and the transfer function of the other RC filter is H2. The transfer function of
the composed circuit is:

H(jω) = H1(jω) ·H2(jω) (15)

+

−
vin(t)

1 µF

1 kΩ

+

−

vout(t)

(a) An RC high-pass filter in the “time-domain”.

−
+ Ṽin(jω)

ZC(jω)

ZR(jω)

+

−

Ṽout(jω)

(b) An RC high-pass filter in the “phasor-domain”.

i. Draw this circuit.
Solution:

−

+

+

−
vin(t)

100 µH

100 Ω

1 µF

1 kΩ

+

−

vout(t)

Figure 3: “Time-domain" circuit: Combination of the two filter circuits, through a buffer to avoid loading.

−
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ZR(jω)

ZC(jω)

ZR(jω)

+

−

Ṽout(jω)

Figure 4: “Phasor-domain" circuit: Combination of the two filter circuits, through a buffer to avoid loading.

ii. Plot the magnitude of the composed circuit. In fig. 5 is a log-log plot with the magnitudes of∣∣H1(jω)
∣∣ and

∣∣H2(jω)
∣∣ drawn to assist you.

Solution: The final magnitude plot should be constructed by plotting the products of the two
lines at each frequency.
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Figure 5: Log-log plot template for magnitude.
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Solution plot of transfer function magnitude

This is a band-pass filter.
iii. Plot the phase of the composed circuit. In fig. 6 is a semi-log plot with the phases ]H1(jω) and

]H2(jω) drawn to assist you.
Solution: The final phase plot should be obtained by adding the lines from the two transfer
functions.
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Semi-log plot of transfer function phase
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Figure 6: Plot template for phase.
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Solution plot of transfer function phase
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2. Bode Plots (straight-line approximations) and filters
Our eventual goal is to construct Bode plots of the following circuit, with L = 100 µH, C = 1 µF, R1 =
100 Ω, and R2 = 1 kΩ:

−

+

−
+

Ṽin(jω)

ZL(jω)

ZR(jω)

ZC(jω)

ZR(jω)

+

−

Ṽout(jω)

Figure 7

To do this we will leverage the fact that Bode plots can be composed in systematic ways.

Before we dive into the problem, let’s consider a modification of the magnitude plot that will help us work
with multiple magnitude plots at once. Namely, instead of plotting

∣∣H(jω)
∣∣ vs. ω where the y-axis is on a

logarithmic scale, we plot 20 log10(
∣∣H(jω)

∣∣) vs. ω instead, and now the y-axis is on a linear scale.

Why would we want to do this? Well, when combining magnitude transfer functions, we end up multiplying
them. But we really want to add two plots graphically for simplicity, not multiply them, so we will just plot
and add the logarithms. (The constant multiple 20 is there for convention reasons, related to decibels.)
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Plot of
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∣∣.
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Linear y−axis: Plot of
∣∣H(jω)

∣∣.
Exact

Notice that we do not need to do this for the phase plots, since their y axes are naturally in linear scale, and
combining plots can already be done by addition. Now we are ready to begin working on the problems.

(a) Consider the first half of this circuit:

−
+

Ṽin,1(jω)

L

R1

+

−

Ṽout,1(jω)
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We learned in the previous discussion that the transfer function is given by

H1(jω) =
Ṽout,1

Ṽin,1
=

1

1 + jω L
R1

(16)

and the cutoff frequency ωc,1 is given by

ωc,1 =
R1

L
=

100 Ω

100 µH
= 1× 106

rad

s
(17)

and plots of the transfer function are given by
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Plot of |H1(jω)|.
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Plot of ]H1(jω).

On these grids, draw the Bode plots (piecewise linear approximations) for magnitude and phase.

Solution: One intuitive way to think about these plots is graphically, using aymptotes and ap-
proximating different curved segments as lines. However, there is also a much more mathematically-
motivated approach to forming Bode Plots based on the properties of logarithms, which also explains
when and why certain approximations are valid. For this analysis, see the Alternate Solution below.
Magnitude Bode Plot: Graphically, we notice that there are effectively 2 distinct regions of the plot to
examine. At frequencies much below the cutoff ω � ωc, the magnitude plot is effectively a horizontal
line. So, we can draw that with a dashed segment. For frequencies much larger than cutoff ω � ωc,
we have a line with a decreasing slope (of -1). We similar draw this asymptote, dashed.
Now, once we plot these both, there is a point of conflict in the middle, right around ωc. In this region,
we will effectively join the two models at a point, and pick the corresponding model for a given region
(horizontal for ω < ωc, sloped for ω > ωc.)
You might wonder how we handle the fact that around ωc, the sloped line claims that the magnitude
at frequencies lower than ωc should keep increasing, whereas the horizontal line in that region claims
the magnitude is straight. Similarly, the horizontal line claims that the magnitude at frequencies higher
than ωc should stay constant, whereas the sloped line in that region claims the magnitude is decreasing.
What we do here is default to unilaterally picking the model that is better for a given region. That’s
why we abruptly transition from one regime to the other; at ωc − ε for some small ε, the straight line
is better, so we pick that curve. At ωc + ε, we’re now closer to the sloped model, so we start to slope
down. This is to maintain simplicity while staying true (within bounded error) to the actual plot, which
we know the shape of.
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Plot of |H1(jω)|.

Linear Approximation (Bode)
Exact

Phase Bode Plot: This one is a little bit trickier, since 2 line segments simply can’t do a good job
modeling the curvature of the actual phase. What’s as simple as possible while being more detailed
than 2 lines? 3 lines! So, we use 3 lines. The regimes we will follow are motivated by the natural
division of the frequency axis into "decades", or factors of 10. So, we have 3 regions to examine:

• ω ≤ ωc
10

• ωc
10 ≤ ω ≤ 10ωc

• 10ωc ≤ ω
In the first and third regions, where ω is significantly smaller than or larger than ωc, we will approxi-
mate the cirves as horizontal lines. In the middle region, we join the other approximations by a straight
line. We can show (as Note 6 and Note 7 mention) that the error with this approximation is bounded
by about 6◦, which is good enough for a first pass by hand when doing filter design.
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Plot of ]H1(jω).

Linear Approximation (Bode)
Exact

Alternate Solution: We recognize that we can write H1(jω) in the form

H1(jω) =
1

1 + jω L
R1

=
1

1 + j ω
ωc,1

. (18)

Now we know the “recipe” to draw Bode plots, in particular

• For ω � ωc,1,

H1(jω) =
1

1 + j ω
ωc,1

≈ 1

1
= 1. (19)

What this means is that
– For the Bode plot of

∣∣H1(jω)
∣∣ vs. ω:

20 log10(
∣∣H1(jω)

∣∣) ≈ 20 log10(1) = 0. (20)

Correspondingly, in the Bode plot, for ω < ωc,1, the plot is constant with 20 log10(
∣∣H1(jω)

∣∣) =
0.

– For the Bode plot of ]H1(jω) vs. ω:

]H1(jω) ≈ ]1 = 0. (21)

Correspondingly, in the Bode plot, for ω < ωc,1/10, the plot is constant with ]H1(jω) = 0.
• For ω � ωc,1,

H1(jω) =
1

1 + j ω
ωc,1

≈ 1

j ω
ωc,1

= −j
ωc,1
ω
. (22)

What this means is that

Discussion 5B, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 11



Discussion 5B @ 2021-09-29 21:27:41-07:00

– For the Bode plot of
∣∣H1(jω)

∣∣ vs. ω:

20 log10(
∣∣H1(jω)

∣∣) ≈ 20 log10

(
ωc,1
ω

)
= 20 log10(ωc,1)− 20 log10(ω). (23)

Correspondingly, in the Bode plot, for ω > ωc,1, the plot, starting at (ωc,1, 0), decreases with
slope −20 per decade.

– For the Bode plot of ]H1(jω) vs. ω:

]H1(jω) ≈ ]

(
−j
ωc,1
ω

)
= ](−j) = −π

2
. (24)

Correspondingly, in the Bode plot, for ω > 10ωc,1, the plot is constant with ]H1(ω) = −π
2 .

• For ω such that ωc,1/10 < ω < 10ωc,1, the behavior of the magnitude Bode plot is already defined,
but not for the phase Bode plot. In this case we just define the plot to connect (ωc,1/10, 0) and
(10ωc,1,−π

2 ) by a line.

(b) Consider the second half of the circuit:

−
+

Ṽin,2(jω)

C

R2

+

−

Ṽout,2(jω)

We learned in the previous discussion that the transfer function is given by

H2(jω) =
Ṽout,2

Ṽin,2
=

jωR2C

1 + jωR2C
(25)

and the cutoff frequency ωc,2 is given by

ωc,2 =
1

R2C
=

1

(1 kΩ) · (1 µF)
= 1× 103

rad

s
(26)

and plots of the transfer function are given by
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Plot of |H2(jω)|.
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Plot of ]H2(jω).

On these grids, draw the Bode plots (piecewise linear approximations) for magnitude and phase.

Solution: As before, we will default to the graphical method here; for a more mathematical analysis
using logarithms, see the Alternate Solution below.
These are highly similar to the previous subpart, but with the line segments "swapped" (for example
for the Magnitude plot, sloped for smaller frequencies, and horizontal for larger frequencies). So, we
don’t need to repeat the analysis, and can draw the same lines as before in the new regions.
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Plot of |H2(jω)|.

Linear Approximation (Bode)
Exact
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Plot of ]H2(jω).

Linear Approximation (Bode)
Exact

Alternate Solution: We recognize that we can write H1(jω) in the form We recognize that we can
write H2(jω) in the form

H2(jω) =
jωR2C

1 + jωR2C
=

j ω
ωc,2

1 + j ω
ωc,2

. (27)

Now we know the “recipe” to draw Bode plots, in particular

• For ω � ωc,2,

H2(jω) =
j ω
ωc,2

1 + j ω
ωc,2

≈
j ω
ωc,2

1
= j

ω

ωc,2
. (28)

What this means is that
– For the Bode plot of

∣∣H2(jω)
∣∣ vs. ω:

20 log10(
∣∣H2(jω)

∣∣) ≈ 20 log10

(
ω

ωc,2

)
= 20 log10(ω)− 20 log10(ωc,2). (29)

Correspondingly, in the Bode plot, for ω < ωc,2, the plot increases with slope 20 per decade.
– For the Bode plot of ]H2(ω) vs. ω:

]H1(jω) ≈ ]

(
j
ω

ωc,2

)
= ]j =

π

2
. (30)

Correspondingly, in the Bode plot, for ω < ωc,2/10, the plot is constant with ]H1(jω) = π
2 .

• For ω � ωc,2,

H2(jω) =
j ω
ωc,2

1 + j ω
ωc,2

≈
j ω
ωc,2

j ω
ωc,2

= 1. (31)
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What this means is that
– For the Bode plot of

∣∣H2(jω)
∣∣ vs. ω:

20 log10(
∣∣H2(jω)

∣∣) ≈ 20 log10(1) = 0. (32)

Correspondingly, in the Bode plot, for ω > ωc,2, the plot is constant with 20 log10(
∣∣H2(ω)

∣∣) =
0.

– For the Bode plot of ]H2(jω) vs. ω:

]H2(jω) ≈ ]1 = 0. (33)

Correspondingly, in the Bode plot, for ω > 10ωc,2, the plot is constant with ]H2(ω) = 0.
• For ω such that ωc,2/10 < ω < 10ωc,2, the behavior of the magnitude Bode plot is already defined,

but not for the phase Bode plot. In this case we just define the plot to connect (ωc,2/10, π2 ) and
(10ωc,2, 0) by a line.

(c) Now, we will put this circuit together. Recall the diagram in fig. 7:
We saw earlier in the discussion that the transfer function is

H(jω) =
Ṽout

Ṽin
= H1(jω)H2(jω) (34)

and the transfer function plots are given by
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Plot of ]H(jω).

]H1(jω)

]H2(jω)

]H(jω)

Note that the green (solid) line overlaps parts of the red (dashed) and blue (dotted) lines. (On these
grids, draw the Bode plots (piecewise linear approximations) for magnitude and phase.
Hint: Recall that

20 log10(
∣∣H(jω)

∣∣) = 20 log10(
∣∣H1(jω)H2(jω)

∣∣) = 20 log10(
∣∣H1(jω)

∣∣∣∣H2(jω)
∣∣) (35)

= 20 log10(
∣∣H1(jω)

∣∣) + 20 log10(
∣∣H2(ω)

∣∣) (36)

]H(jω) = ]H1(jω) + ]H2(jω). (37)

Solution: What the hint means is that we can add the plots (for both magnitude and phase) ofH1(jω)
and H2(jω) to get the plot for H(jω). In general this will let us do analysis of higher-order circuits by
breaking them down into easily-analyzable chunks and adding the plots. Of course, since this property
holds for the transfer functions, it holds for the Bode plots (which are good linear approximations to
the transfer functions) too. So our plots end up looking like this:
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