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EECS 16B Designing Information Devices and Systems II
Fall 2021 Discussion Worksheet Discussion 6A
The following notes are useful for this discussion: Note 9, Discussion 2B, Homework 04.

1. Translating System of Differential Equations from Continuous Time to Discrete Time

Working through this question will help you better understand differential equations with inputs, and the
sampling of a continuous-time system of differential equations into a discrete-time view. These concepts
are important for control, since it is often easier to think about doing what we want in discrete-time. This
question should initially feel similar to dis02B, and in later subparts, we extend our analysis to the case of a
vector differential equation.

(a) Consider the scalar system below:

dx(t)

dt
= λx(t) + u(t). (1)

Further suppose that our input u(t) of interest is piecewise constant over durations of width ∆. This is
the same case we considered in dis02B. In other words:

u(t) = u(i∆) = ud[i] if t ∈ (i∆, (i+ 1)∆]. (2)

Similarly, for x(t),

x(t) = x(i∆) = xd[i] (3)

Let’s revisit the solution for eq. (1), when we’re given the initial conditions at t0, i.e we know the value
of x(t0) and want to solve for x(t) at any time t ≥ t0:

x(t) = eλ∆(t)x(t0) +

∫ t

t0

u(θ)eλ(t−θ)dθ (4)

where ∆(t) = t− t0. Given that we start at t = i∆, where x(t) = xd[i], and satisfy eq. (1) where
do we end up at xd[i+ 1]?
Solution: For t ∈ (i∆, (i+ 1)∆], the differential equation takes the form

dx(t)

dt
= λx(t) + u(t) = λx(t) + ud[i] (5)

where we know the inital conditions that x(i∆) = xd[i]. We can solve this equation for x(t) using
the integral equation from eq. (4) and the fact that u(t) is piecewise constant. In particular, we get the
following form

x(t) = eλ(t−i∆)xd[i] +

∫ t

i∆
u(θ)eλ(t−θ)dθ (6)
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Plugging in the timestep of interest, we set t = (i+ 1)∆, to evaluate xd[i+ 1] as

xd[i+ 1] = eλ∆xd[i] +

∫ ∆(i+1)

i∆
ud[i]e

λ((i+1)∆−θ)dθ (7)

= eλ∆xd[i] + ud[i]
eλ∆ − e0

λ
(8)

= eλ∆xd[i] + ud[i]
eλ∆ − 1

λ
(9)

which gives us the solution for xd[i+ 1].
Alternative solution: We can guess that the form of the solution will be:

x(t) = αeλ(t−i∆) + β (10)

Why is it in terms of t−i∆? Given the value xd[i] = x(i∆), we want to model the growth of x between
i∆ and t, independently of the specific values of i∆ and t. We only care about their difference, given
that we are in a specific interval.
To fit x(t) to eq. (5), we equate the LHS of eq. (5) to the RHS. The LHS is:

dx(t)

dt
=

d

dt

(
αeλ(t−i∆) + β

)
= λαeλ(t−i∆) (11)

so equating the LHS with the RHS gives:

λαeλ(t−i∆) = λx(t) + ud[i] (12)

= λ
(
αeλ(t−i∆) + β

)
+ ud[i] (13)

= λαeλ(t−i∆) + λβ + ud[i] (14)

=⇒ 0 = λβ + ud[i] (15)

=⇒ β = −ud[i]
λ

. (16)

Now we use the initial condition, x(i∆) = xd[i]. Expanding x(i∆) as per our guess,

xd[i] = x(i∆) = αeλ(i∆−i∆) + β = α+ β (17)

And using β = −ud[i]
λ

we get

xd[i] = α+
−ud[i]
λ

(18)

=⇒ α = xd[i] +
ud[i]

λ
. (19)

Now we have the values of α and β, which is all we need to write x(t) fully. So for t ∈ (i∆, (i+ 1)∆]
(which is the assumption we made for eq. (5) to hold),

x(t) = αeλ(t−i∆) + β =

(
xd[i] +

ud[i]

λ

)
eλ(t−i∆) − ud[i]

λ
(20)
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= eλ(t−i∆)xd[i] +
eλ(t−i∆) − 1

λ
ud[i] (21)

The reason we simplify in this manner is because we want to split the value of x(t) into the effect of
the initial condition xd[i], and the input ud[i]. Now we can see how each independent part affects x(t).
Since x(t) is continuous across all t, xd[i+1] = x((i+1)∆). The continuity condition ensures that the
function doesn’t have bad behavior at only the points i∆ or (i+ 1)∆. Of course, these discontinuities
don’t happen in real systems, so our assumption makes sense. Thus

xd[i+ 1] = x((i+ 1)∆) = eλ((i+1)∆−i∆)xd[i] +
eλ((i+1)∆−i∆) − 1

λ
ud[i] (22)

= eλ∆xd[i] +
eλ∆ − 1

λ
ud[i]. (23)

This is the quantity we want.

(b) Suppose we now have a continuous-time system of differential equations, that forms a vector differen-
tial equation. We express this with an input in vector form:

d~x(t)

dt
= A~x(t) +~bu(t) (24)

where ~x(t) is n-dimensional. Suppose further that the matrix A has distinct and non-zero eigenvalues
λ1, λ2, . . . , λn. with corresponding eigenvectors ~v1, ~v2, . . . , ~vn. We collect the eigenvectors together
and form the matrix V = [~v1, ~v2, . . . , ~vn]. (Hint: What’s the significance of this information?)
If we apply a piecewise constant control input ud[i] as in (2), and sample the system ~x(t) at time
intervals t = i∆, what are the corresponding Ad and~bd in:

~xd[i+ 1] = Ad~xd[i] +~bdud[i] (25)

(Hint : Define terms Λ∆
e =


eλ1∆ 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . eλn∆

, Λ−1 =


1
λ1

0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . 1

λn

)

Solution: First, following the hint, we notice that with a full set of distinct eigenvalues and corre-
sponding eigenvectors, we can change coordinates so that ~x(t) = V ~y(t) and ~y(t) = V −1~x(t). Using
this transformation we diagonalize the system of differential equations, i.e

d~x(t)

dt
= A~x(t) +~bu(t) (26)

=⇒ dV ~y(t)

dt
= AV ~y(t) +~bu(t) (27)

∴
d~y(t)

dt
= V −1AV ~y(t) + V −1~bu(t) (28)
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Note that using the basis of eigenvectors V , we’ve diagonalized A to get Λ =


λ1 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . λn


∴

d~y(t)

dt
= Λ~y(t) + V −1~bu(t) (29)

We use subscripts k to index into vectors, giving us an uncouple system such that:

dyk(t)

dt
= λyk(t) +

(
V −1b

)
k
ud[i] (30)

for which, we can solve using eq. (9) to get

yk((i+ 1)∆) = eλk∆yk(i∆) +

(
eλk∆ − 1

λk

)(
V −1b

)
k
ud[i] (31)

As we are in a diagonal basis now, we can compose these individual scalar elements, and write:

~y((i+ 1)∆) =




eλ1∆ 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . eλn∆



 ~y(i∆) +




eλ1∆−1
λ1

0 . . . 0
...

. . .
...

...
. . .

...

0 . . . . . . eλn∆−1
λn




V −1~bud[i]

(32)

Now, we name some of the terms above, for notational convenience going forward:

Λ∆
e =


eλ1∆ 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . eλn∆

 Λ−1 =


1
λ1

0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . 1

λn

 ~̃ud[i] = V −1~bud[i] (33)

So, with this new notation, we can write the second matrix in eq. (32) as:1
eλ1∆−1
λ1

0 . . . 0
...

. . .
...

...
. . .

...

0 . . . . . . eλn∆−1
λn

 =


eλ1∆

λ1
0 . . . 0

...
. . .

...
...

. . .
...

0 . . . . . . eλn∆

λn

+


−1
λ1

0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . −1

λn

 (34)

1In a matrix product, if both matrices are diagonal, the product is commutative.
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=


1
λ1

0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . 1

λn




eλ1∆ 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . eλn∆

−


1
λ1

0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . 1

λn


(35)

= Λ−1Λ∆
e − Λ−1I (36)

= Λ−1
(

Λ∆
e − I

)
(37)

This gives us

~y((i+ 1)∆) = Λ∆
e ~y(i∆) + Λ−1(Λ∆

e − I)~̃ud[i] (38)

Using this form in the simplification, we find that:

~xd[i+ 1] = V ~yd[i+ 1] (39)

= V

(
Λ∆
e ~yd[i] + Λ−1

(
Λ∆
e − I

)
~̃ud[i]

)
(40)

=
(
V Λ∆

e V
−1
)
~xd[i] +

(
V Λ−1

(
Λ∆
e − I

))
~̃ud[i] (41)

Now, recall that our original goal was to write out Ad and ~bd, and we can do that now with our
expression. Resubstituting ~̃ud[i] = V −1~bud[i] we have:

~xd[i+ 1] =
(
V Λ∆

e V
−1
)
~xd[i] +

(
V Λ−1

(
Λ∆
e − I

))
V −1~bud[i] (42)

Therefore,

Ad = V Λ∆
e V

−1 ~bd = V Λ−1
(

Λ∆
e − I

)
V −1~b (43)

where Λ∆
e =


eλ1∆ 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . eλn∆

 and Λ−1 =


1
λ1

0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . 1

λn


(c) In the previous part, we had a matrix A which was diagonalizable using a eigenbasis. You might recall

from Homework 4, that for critically damped systems we had A =

[
λ β
0 λ

]
(a non-diagonalizable

matrix). Assuming the input u(t) = 0, consider the system of differential equations given by

d

dt

[
x1(t)
x2(t)

]
=

[
λ β
0 λ

][
x1(t)
x2(t)

]
(44)

Assuming that we know the solution at t = i∆, where x(i∆) = xd[i], find Ad such that we have
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a solution in the discrete time system for eq. (44)

~xd[i+ 1] = Ad~xd[i] (45)

(Hint: From 1(a) we know for t ≥ t0

dx(t)

dt
= λx(t) + u(t) (46)

with initial conditions x(t) = x(t0) for t = t0, has solution of the form)

x(t) = eλ(t−t0)x(t0) +

∫ t

t0

eλ(t−θ)u(θ)dθ (47)

Solution: Starting with x2(t) we note that for the interval (i∆, (i+ 1)∆] we know how to solve

dx2(t)

dt
= λx2(t) (48)

In particular, using eq. (47) we have:

x2(t) = eλ(t−i∆)x2[i] (49)

∴ x2[i+ 1] = eλ∆x2[i] (50)

Using this to find the solution for x1(t), which satisfies the following diff. eq

dx1(t)

dt
= λx1(t) + βx2(t) (51)

= λx1(t) + βeλ(t−i∆)x2[i] (52)

We can solve the above equation by using eq. (47) by setting u(θ) = eλ(θ−i∆)x2[i]

x1(t) = eλ(t−i∆)x1[i] + βx2[i]

∫ t

i∆
eλ(t−θ)eλ(θ−i∆)dθ (53)

Evaluating x1[i+ 1], we substitute t = (i+ 1)∆ to get

x1[i+ 1] = eλ∆x1[i] + βx2[i]

∫ (i+1)∆

i∆
eλ∆dθ (54)

= eλ∆x1[i] + eλ∆β∆x2[i] (55)

Putting in the matrix-vector form, we finally recover[
x1[i+ 1]
x2[i+ 1]

]
=

[
eλ∆x1[i] + eλ∆β∆x2[i]

eλ∆x2[i]

]
(56)

=

[
eλ∆ eλ∆β∆
0 eλ∆

][
x1[i]
x2[i]

]
(57)

∴ ~xd[i+ 1] = Ad~xd[i] (58)
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where Ad =

[
eλ∆ eλ∆β∆
0 eλ∆

]
(d) (Practice) In this subpart we generalize the above procedure, by making u(t) 6= 0. Consider the

following system of differential equations:

d~x(t)

dt
= A~x(t) +~bu(t) (59)

where A =

[
λ β
0 λ

]
, and b =

[
b1
b2

]
. Given ~xd[i], find Ad and~bd such that

~xd[i+ 1] = Ad~xd[i] +~bdud[i] (60)

Solution: We follow a similar strategy as before, but now we have to solve the following equation:

dx2(t)

dt
= λx2(t) + b2ud[i] (61)

From eq. (47) we have:

x2(t) = eλ(t−i∆)x2[i] + b2

∫ t

i∆
eλ(t−θ)ud[i]dθ (62)

= eλ(t−i∆)x2[i] + b2ud[i]
eλ(t−i∆) − 1

λ
(63)

= eλ(t−i∆)

(
x2[i] +

b2ud[i]

λ

)
− b2ud[i]

λ
(64)

For t = (i+ 1)∆, we get

x2[i+ 1] = eλ∆x2[i] + b2ud[i]
eλ∆ − 1

λ
(65)

Now, for the state variable x1(t), we have the differential equation:

dx1(t)

dt
= λx1(t) + βx2(t) + b1ud[i] (66)

= λx1(t) + βeλ(t−i∆)

(
x2[i] +

b2ud[i]

λ

)
+ b1ud[i]−

βb2ud[i]

λ
(67)

= λx1(t) + βeλ(t−i∆)p+ q (68)

where for simplification we use p = βx2[i] + βb2ud[i]
λ and q = b1ud[i]− βb2ud[i]

λ . Solving for x1(t)

x1(t) = eλ(t−i∆)x1[i] +

∫ t

i∆
eλ(t−θ)

(
peλ(θ−i∆) + q

)
dθ (69)

= eλ(t−i∆)x1[i] +

∫ t

i∆
peλ(t−i∆)dθ +

∫ t

i∆
qeλ(t−θ)dθ (70)

= eλ(t−i∆)x1[i] + peλ(t−i∆)(t− i∆) + q
eλ(t−i∆) − 1

λ
(71)
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To compute t = (i+ 1)∆, we have

x1[i+ 1] = eλ∆x1[i] + peλ∆∆ + q
eλ∆ − 1

λ
(72)

= eλ∆x1[i] + βeλ∆∆

(
x2[i] +

b2ud[i]

λ

)
+
eλ∆ − 1

λ

(
b1ud[i]−

βb2ud[i]

λ

)
(73)

= eλ∆x1[i] + βeλ∆∆x2[i] +
eλ∆ − 1

λ
b1ud[i] +

(
∆eλ∆

λ
− eλ∆ − 1

λ2

)
βb2ud[i] (74)

In the matrix vector form, we recover the following form:[
x1[i+ 1]
x2[i+ 1]

]
=

[
eλ∆ β∆eλ∆

0 eλ∆

][
x1[i]
x2[i]

]
+

 eλ∆−1
λ β

(
∆eλ∆

λ − eλ∆−1
λ2

)
0 eλ∆−1

λ

[b1
b2

]
ud[i] (75)

Transforming to the matrix-vector form, we compare to

~xd[i+ 1] = Ad~xd[i] + ~bdud[i] (76)

which gives Ad =

[
eλ∆ β∆eλ∆

0 eλ∆

]
and ~bd = Bd~b where Bd =

 eλ∆−1
λ β

(
∆eλ∆

λ − eλ∆−1
λ2

)
0 eλ∆−1

λ


(e) Consider the discrete-time system

~xd[i+ 1] = Ad~xd[i] +~bdud[i] (77)

Suppose that ~xd[0] = ~x0. Unroll the implicit recursion to write ~xd[i+ 1] as a sum that involves ~x0

and the ud[j] for j = 0, 1, . . . , i. You don’t need to worry about what Ad and~bd actually are in terms
of the original parameters.
(Hint: If we have a scalar difference equation, how would you solve the recurrence?)

Solution:
Here, we derive the unrolled recursion and make a guess at the form of the solution in summation
notation. Let’s look at the pattern starting with ~xd[1], given that ~xd[i+ 1] = Ad~xd[i] +~bdud[i],

~xd[1] = Ad~xd[0] +~bdud[0] (78)

~xd[2] = Ad~xd[1] +~bdud[1] (79)

= Ad(A~xd[0] +~bdud[0]) +~bdud[1] (80)

= A2
d~xd[0] +Ad~bdud[0] +~bdud[1] (81)

~xd[3] = Ad~xd[2] +~bdud[2] (82)

= Ad

(
A2
d~xd[0] +Ad~bdud[0] +~bdud[1]

)
+~bdud[2] (83)

= A3
d~xd[0] +A2

d
~bdud[0] +Ad~bdud[1] +~bdud[2] (84)
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So, given this pattern, if we guess:

~xd[i] = Aid~xd[0] +

 i−1∑
j=0

ud[j]A
i−1−j
d

~bd (85)

Then, let’s see what we get for ~xd[i+ 1], and make sure our guess is correct:

~xd[i+ 1] = Ad~xd[i] +~bdud[i] (86)

= Ad

Aid~xd[0] +

 i−1∑
j=0

ud[j]A
i−1−j

~bd
+~bdud[i] (87)

= Ai+1
d ~xd[0] +


 i−1∑
j=0

ud[j]A
i−j

+ ud[i]

~bd (88)

= Ai+1
d ~xd[0] +

 i∑
j=0

ud[j]A
i−j

~bd (89)

This satisfies (85), for i+ 1 and hence our guess was correct!
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2. Continuous-time System Responses

We have a differential equation d~x(t)
dt = A~x(t), where A is a real matrix and has eigenvalues λ. For systems

(A, B, C) it is a scalar differential equation, whereas for D, E which have more than 1 eigenvalue, this
equation is a vector differential equation. For each set of λ values plotted on the real-imaginary complex
plane, sketch x1(t) with an initial condition of x1(0) = 1. Do we have sufficient information to exactly
plot x1(t) for each vector differential equation? If not, sketch a couple of possible solutions.. In the
scalar case, x1(t) ≡ x(t).

Re{λ}

Im{λ}

B

(1, 10j)

(1,−10j)

E

(−1, 10j)

(−1,−10j)

D

−0.5

A
1.5

C

Solution: We recall that if the imaginary component of an eigenvalue is nonzero, the system will experience
oscillations in its settling response. Since we have a real matrix A, any eigenvalue with nonzero imaginary
components must appear in complex conjugate pairs, which explains why D and E are grouped by pairs of
eigenvalues. As we’ve seen previously in underdamped example from RLC circuit (in Homework 4), real
differential equation systems can have complex eigenvalues. From phasor analysis, we recall that solutions
have the form

x(t) =
x0e

λrtejφ

2
ejωt +

x0e
λrte−jφ

2
e−jωt (90)

= x0e
λrtcos(ωt+ φ) (91)

with phasor x̃ = x0eλrtejφ

2 , where λr is Re{λ}. Note that the above equation has two degrees of freedoms,
x0 (amplitude) and φ (phase). However we’re only given one initial condition, i.e we know x1(0) = 1.
However, plugging t = 0 in eq. (91) we get x(0) = x0cos(φ) = 1. Here don’t have sufficient information for
recovering the exact values of both x0, φ. For instance, we could have (x0 = 1, φ = 0), or (x0 =

√
2, φ = π

4 )
as valid solutions.

We analyze each case sequentially to determine what the system’s response might look like:

(A): We see a decay since the real component of eigenvalue is negative, but here, since the imaginary
component is zero, there will be no oscillations (there is a direct exponential decay from 1 to 0).
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(B): When the eigenvalue has a real component exactly on zero, then the (ideal) system here will neither
grow nor decay over time; it will remain at the initial condition, which is 1. Since any disturbance to
the system might impact the system’s behavior, we can say this system is marginally stable.

(C): In this case the real component is positive, so the system will grow over time. The real part is larger in
magnitude, so the growth will proceed at a greater rate. Since there is no imaginary component here,
the system will not oscillate, and instead grows directly from the initial condition towards∞.

(D): These eigenvalues have negative real components, indicating that the system is stable, because the
effect of the initial condition will decay over time. However, the imaginary component is nonzero, and
these imaginary components are connected to sinusoids in ways that we have seen. This indicates that
the response will experience oscillations around the value 0, as it decays from 1 to 0.

(E): The real component here is positive, which leads to exponential growth of the initial condition over
time. Since the imaginary components of this complex conjugate pair of eigenvalues is nonzero, the
system will oscillate as it grows.

The plots below demonstrate the qualitative behavior described above (and include the imaginary component
as well for systems D/E).
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(a) System A (λ = −0.5)
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(b) System B (λ = 0)
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(c) System C (λ = 1.5)
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(d) System D (λ = −1± 10j)
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(e) System E (λ = 1± 10j)
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