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EECS 16B Designing Information Devices and Systems II
Fall 2021 Discussion Worksheet Discussion 6B
The following notes are useful for this discussion: Note 9, Note 10

1. System Identification by Means of Least Squares
Working through this question will help you understand better how we can use experimental data taken from
a (presumably) linear system to learn a discrete-time linear model for it using the least-squares techniques
you learned in 16A. You will later do this in lab for your robot car.

As you were told in 16A, least-squares and its variants are not just the basic workhorses of machine learning
in practice, they play a conceptually central place in our understanding of machine learning well beyond
least-squares.

Throughout this question, you should consider measurements to have been taken from one long trace through
time.

(a) Consider the scalar discrete-time system

x[i+ 1] = ax[i] + bu[i] + w[i] (1)

Where the scalar state at time i is x[i], the input applied at time i is u[i] and w[i] represents some
external disturbance that also participated at time i (which we cannot predict or control, it’s a purely
random disturbance).
Assume that you have measurements for the states x[i] from i = 0 to m and also measurements for the
controls u[i] from i = 0 to m− 1.
Set up a least-squares problem that you can solve to get an estimate of the unknown system
parameters a and b.
Solution: Our model is of the form

x[i+ 1] = ax[i] + bu[i] + w[i] (2)

where w[i] is our error term and we are interested in a and b. Since we cannot predict the disturbance
w[i] (and therefore cannot have a parameter in our solution associated with the effect of the disturbance
on our system), we will solve the adjusted equation in eq. (3).

x[i+ 1] ≈ ax[i] + bu[i] (3)

We have [1,m] measurements, and so our least squares formulation is:
x[1]
x[2]
...

x[m]

 ≈


x[0] u[0]
x[1] u[1]
...

...
x[m− 1] u[m− 1]


[
a
b

]
(4)

~s ≈ D~p (5)
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(b) What if there were now two distinct scalar inputs to a scalar system

x[i+ 1] = ax[i] + b1u1[i] + b2u2[i] + w[i] (6)

and that we have measurements as before, but now also for both of the control inputs.
Set up a least-squares problem that you can solve to get an estimate of the unknown system
parameters a, b1, b2.
Solution: Our new model is of the form

x[i+ 1] = ax[i] + b1u1[i] + b2u2[i] + w[i] (7)

where w[i] is our error term and we are interested in a, b1, b2. As we did before, we will modify the
system and drop the disturbance term, converting the equality to an approximation.

x[i+ 1] ≈ ax[i] + b1u1[i] + b2u2[i] (8)

As before, we have [1,m] measurements, and so our least squares formulation is:
x[1]
x[2]
...

x[m]

 ≈


x[0] u1[0] u2[0]
x[1] u1[1] u2[1]
...

...
...

x[m− 1] u1[m− 1] u2[m− 1]


 ab1
b2

 (9)

~s ≈ D~p (10)

(c) What could go wrong in the previous case? For what kind of inputs would make least-squares
fail to give you the parameters you want?
Solution: We can take a look at the least squares formula, and think about what the possible failure
points are.

~p =
(
D>D

)−1
D>~s. (11)

In this equation, the likely point of failure is the inversion ofD>D; the other operations (matrix-matrix
multiplications, matrix-vector multiplications) do not have the same issue.
When might D>D not be invertible? This happens when D has columns that are not linearly indepen-
dent. For example, it could be because the inputs ~u1 and ~u2 are too similar, as if ~u1 = α~u2. We need
these two inputs to be different and sufficiently varied so that least-squares does not fail.
Let’s consider the intuition behind why the inputs being the same will cause non-invertibility ofD>D.
What’s the goal here? We want to determine the impact of our various inputs on the state of the system
(this is what it means to determine ~b), and these inputs will each impact the state in a some way.
However, if we apply the same value for both inputs, or repeatedly make one input a scaled version
of the other, then we will ultimately have no way of knowing which inputs caused a given observed
change in the state. This leads to ambiguity, and this ambiguity is what manifests itself as a lack of
solution to least-squares.

(d) Now consider the two dimensional state case with a single input.

~x[i+ 1] =

[
x1[i+ 1]
x2[i+ 1]

]
=

[
a11 a12
a21 a22

]
~x[i] +

[
b1
b2

]
u[i] + ~w[i] (12)
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How can we treat this like two parallel problems to set this up using least-squares to get estimates
for the unknown parameters a11, a12, a21, a22, b1, b2? Write the least squares solution in terms of
your known matrices and vectors (including based on the labels you gave to various matrices/vectors
in previous parts).
Hint: What work/computation can we reuse across the two problems?

Solution: We can treat this as two parallel problems, with the first row and second row making up
the two problems. Let r be the row index:

xr[i+ 1] ≈
[
ar1 ar2

] [x1[i]
x2[i]

]
+ bru[i]. (13)

Combining terms to group the unknowns we can rewrite this as

xr[i+ 1] ≈
[
x1[i] x2[i] u[i]

]ar1ar2
br

 . (14)

Notice that
Thus each row produces a least squares problem of the form

xr[1]
xr[2]
...

xr[m]

 ≈


x1[0] x2[0] u[0]
x1[1] x2[1] u[1]
...

...
...

x1[m− 1] x2[m− 1] u[m− 1]


ar1ar2
br

 . (15)

For succintness as before, let’s say that:

D =


x1[0] x2[0] u[0]
x1[1] x2[1] u[1]
...

...
...

x1[m− 1] x2[m− 1] u[m− 1]

 (16)

Then the least squares solution for this subproblem (just this component of ~x[i+ 1]) is:

ar1ar2
br

 =
(
D>D

)−1
D>


xr[1]
xr[2]
...

xr[m]

 (17)

Notice that there are a number of terms that don’t depend at all on the specific index r; that is, the

central part is a constant matrix
(
D>D

)−1
D which is shared by all of the subproblems. We only

need to calculate
(
D>D

)−1
D> once!

Now, in order to generate a single least-squares solution we should think about what it means to
perform matrix-matrix multiplication, and specifically how this relates to matrix-vector multiplication.
The key is to recognize that we have a situation here where some vector (of parameters, which changes
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based on the index r) is equal to a constant matrix
(
D>D

)−1
D mutliplied by another vector (of state

observations, which also changes based on the index r). Multiplying a set of vectors by the same
matrix, by definition, means we stack the vectors horizontally into a matrix. This means that our
matrix-vector multiplication (yielding a single vector of parameters for that index r) in the previous
equation can be generalized to matrix-matrix multiplication (yielding a matrix containing all of the
parameters we want; that is, we solve for the matrix containing both our ari and br model parameters).
Thus we can stack all the subproblems horizontally to set up the process of solving them all at once:

x1[1] x2[1]
x1[2] x2[2]
...

...
x1[m] x2[m]

 ≈


x1[0] x2[0] u[0]
x1[1] x2[1] u[1]
...

...
...

x1[m− 1] x2[m− 1] u[m− 1]


a11 a21
a12 a22
b1 b2

 (18)

S ≈ DP. (19)

Finally, solving this as a single least squares problem gives us

P =
(
D>D

)−1
D>S (20)
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2. Stability Examples and Counterexamples

(a) Consider the circuit below with R = 1 Ω, C = 0.5 F, and u(t) is some waveform bounded between
−1 and 1 (for example cos(t)). Furthermore assume that vC(0) = 0 V (that the capacitor is initially
discharged).

−
+u(t)

R

C

+

−

vC(t)

This circuit can be modeled by the differential equation

dvC(t)

dt
= −2vC(t) + 2u(t) (21)

Show that the differential equation is always stable (that is, as long as the input u(t) is bounded,
vC(t) also stays bounded). Consider what this means in the physical circuit.

Solution: We can apply the integral solution for a nonhomogeneous differential equation to demon-
strate boundedness of the solution rigorously. The general solution to dx(t)

dt = λx(t) + γu(t) is
x(t) = x0e

λt +
∫ t
0 eλ(t−θ)γu(θ) dθ. Here, we can say that:

vC(t) = vC(0)e−2t +

∫ t

0
e−2(t−θ)2u(θ) dθ (22)

= vC(0)e−2t + 2

∫ t

0
e−2(t−θ)u(θ) dθ (23)

The first term vC(0)e−2t certainly has bounded magnitude. Why? Because vC(0) = 0 V. But what if
it wasn’t? Well even so, since we know λ is negative, and the exponential is decaying with time, for
any finite initial voltage vC(0), that term cannot “blow up”.
Now, let’s deal with the magnitude of this second term to ensure it’s bounded for any u(t) between
−1 and 1. The magnitude of the integral itself is hard to say anything meaningful about. What do
we know? The input u(t) is bounded, so let’s try and distribute the magnitude operation as much as
possible to simplify. We can say that:∣∣∣∣∣2

∫ t

0
e−2(t−θ)u(θ) dθ

∣∣∣∣∣ ≤ 2

∫ t

0

∣∣∣e−2(t−θ)u(θ)
∣∣∣dθ (24)

= 2

∫ t

0

∣∣∣e−2(t−θ)∣∣∣∣∣u(θ)
∣∣ dθ (25)

= 2

∫ t

0
e−2(t−θ)

∣∣u(θ)
∣∣dθ (26)

Why could we remove the magnitude signs around the exponential term in the integral? It’s because
it is always a positive real value. Now, in order to show that the integral remains bounded, we want
to consider the worst-case scenario; could there be some adversarial input u(t) that makes this un-
bounded? Let’s consider some possibilities. For example, if the input is always 0, this is not the
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worst-case because the entire second term disappears. Here, 1 would be the worst-case value for u(t)
at all times t. Why? Well, if u(t) is ever less than 1, then we are not adding as much of the e−2(t−θ)

term as we could be, and so we’re guaranteed to hit the maximum when u(t) = 1. So, let’s check what
happens: ∣∣∣∣∣2

∫ t

0
e−2(t−θ)u(θ) dθ

∣∣∣∣∣ ≤ 2

∫ t

0
e−2(t−θ)

∣∣u(θ)
∣∣ dθ (27)

≤ 2

∫ t

0
e−2(t−θ)1 dθ (28)

= 2e−2t
∫ t

0
e2θ dθ (29)

= 2e−2t
[

1

2
e2θ
]t
0

(30)

= 2e−2t
1

2

(
e2t − 1

)
(31)

= e−2t ·
(

e2t − 1
)

(32)

= 1− e−2t (33)

In each case, we are allowed to replace the actual value of the integral with something larger than itself,
which justifies the use of the ≤ operator in the equations as needed. If we can show something larger
than the integral is bounded, then certainly, the integral itself is also bounded.
Let’s interpret the result. Here, for a constant input u(t) = 1, the effect is that over time, the voltage
settles to 1 from below. In fact, for any circuit with u(t) = +ε, we’ll find that for this initial condition,
the voltage settles to ε from below (because we started at an initial condition of 0). This makes sense
based on our circuit intuition! We recall from back when we first started RC circuit analysis that the
voltage on the capacitor would exponentially approach the input voltage, for a constant input. So the
result makes sense, the the circuit is stable.
Intuition Let’s look at what the differential equation is conveying to us about the evolution of the
system.
The rate of change of the capacitor voltage at some time is related to two quantities; the negative of
the voltage on the capacitor at that time, and the input voltage applied at that time. What does the
first term signify? Well, the capacitor voltage increasing causes it to be less willing to change it’s own
voltage, as the negative sign decreases the rate of change. That is, the more voltage a capacitor has,
the stronger it resists further increases in its voltage. This makes sense based on what we know about
capacitors!
The second term is the input, and naturally, the rate of change will correspond with the input we apply
(no negative sign). Why are the scalars before the 2 terms the same? They both correspond to − 1

RC as
derived at the start of our RC circuit analysis.

(b) Consider the discrete system
x[i+ 1] = 2x[i] + u[i] (34)

with x[0] = 0.
Is the system stable or unstable?
If unstable, find a bounded input sequence u[i] that causes the system to “blow up”. Is there still
a (non-trivial) bounded input sequence that does not cause the system to “blow up”?
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Solution: The system is unstable. This can be seen by considering the piecewise input

u[i] = 1, 0, 0, 0, 0, . . . (35)

i 0 1 2 3 . . .

x[i] 0 1 2 4 . . .

u[i] 1 0 0 0 . . .

2x[i] + u[i] 1 2 4 8 . . .

There is still, however, a case for which a non-zero input results in a stable output:

u[i] = 1,−2, 0, 0, 0, 0, . . . (36)

i 0 1 2 3 . . .

x[i] 0 1 0 0 . . .

u[i] 1 -2 0 0 . . .

2x[i] + u[i] 1 0 0 0 . . .

In fact, there are an infinite number of input sequences that would result in stable outputs. But because
we can find a single example of a bounded input sequence that leads to an unbounded output, the
system in general is unstable.

(c) [Practice, but challenging:] Now, suppose that in the circuit of part (a) we replaced the resistor with
an inductor, L = 1 mH. Repeat part (a) for the new circuit (with an inductor).
Hint: You might find it useful to revisit the process of generating the state-space equations for vC(t)
and iL(t) as done in Note 4 for the LC Tank. The difference is that here, we have an input voltage.

Solution: First, we draw the circuit as in fig. 1.

−
+u(t)

L

C

+

−

vC(t)

Figure 1: The original circuit with an inductor in place of the resistor.

Now, we begin forming the vector state-space equation, which involves relating vC(t) and iL(t) to
their derivatives and the input voltage.

C
dvC(t)

dt
= iC(t) = iL(t) (37)

=⇒ dvC(t)

dt
=

1

C
iL(t) (38)

L
diL(t)

dt
= vL(t) = u(t)− vC(t) (39)

=⇒ diL(t)

dt
=

1

L
vL(t) = − 1

L
vC(t) +

1

L
u(t) (40)
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Combining this info, we find:

d

dt

[
vC(t)
iL(t)

]
=

[
0 1

C
− 1
L 0

][
vC(t)
iL(t)

]
+

[
0
1
L

]
u(t) (41)

How do we solve this system? We want to diagonalize and solve in the eigenbasis, where the coordi-
nates are nice and we can inspect the form of our solution.
First, we solve for the eigenvalues and eigenvectors of the state evolution matrix:

λ1 = j
1√
LC

~v1 =

−j
√

L
C

1

 (42)

λ2 = −j
1√
LC

~v1 =

j
√

L
C

1

 (43)

As it turns out, the fact that these eigenvalues are purely imaginary is critical to keep in mind.
Our system in the eigenbasis (tilde ˜ coordinates), after transformation by the inverse of matrix of
eigenvectors, V −1, is1:

d

dt

[
ṽC(t)

ĩL(t)

]
=

[
−j 1√

LC
0

0 j 1√
LC

][
ṽC(t)

ĩL(t)

]
+


−j

√
L
C j

√
L
C

1 1

−1 [0
1
L

]u(t) (44)

d

dt

[
ṽC(t)

ĩL(t)

]
=

[
−j 1√

LC
0

0 j 1√
LC

][
ṽC(t)

ĩL(t)

]
+

[
1

2LC
1

2LC

]
u(t) (45)

Great! Now we have a system in the eigenbasis. Solving, we find:

dṽC(t)

dt
= j

1√
LC

ṽC(t) +
1

2LC
u(t) (46)

= j
1√
LC

ṽC(t) + ũ(t) (47)

d̃iL(t)

dt
= −j

1√
LC

ĩL(t) +
1

2LC
u(t) (48)

= −j
1√
LC

ĩL(t) + ũ(t) (49)

This means we have integral solutions of the form

ṽC(t) = ṽC(0)e
j 1√

LC
t
+

∫ t

0
e
j 1√

LC
(t−θ)

ũ(θ) dθ (50)

ĩL(t) = ĩL(0)e
−j 1√

LC
t
+

∫ t

0
e
−j 1√

LC
(t−θ)

ũ(θ) dθ (51)

Note our initial conditions are zero in the eigenbasis (they started off at zero and stay that way after
1If any of the following steps confuses you, be sure to check out resources on the process of using a change of basis into the

eigenbasis to solve a system of coupled differential equations.
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transformation). So, we simplify and find:

ṽC(t) =

∫ t

0
e
j 1√

LC
(t−θ)

ũ(θ) dθ (52)

ĩL(t) =

∫ t

0
e
−j 1√

LC
(t−θ)

ũ(θ) dθ (53)

Labeling the quantity 1√
LC

= ωn (this notation will be explained by our end result), we have:

ṽC(t) =

∫ t

0
ejωn(t−θ)ũ(θ) dθ (54)

= ejωnt

∫ t

0
e−jωnθũ(θ) dθ (55)

ĩL(t) =

∫ t

0
e−jωn(t−θ)ũ(θ) dθ (56)

= e−jωnt

∫ t

0
ejωnθũ(θ) dθ (57)

Now, let’s not lose sight of our task in our tedium of our intermediate steps. We want to check stability
of the system, which requires either finding an input that makes the system grow unboundedly, or
showing that it is stable by giving a universal bound that cannot be exceeded as long as the input stays
bounded. One useful result is that if we find, for example, that there’s an input ũ(t) that makes ṽC(t)
unbounded, then that same input (transformed back into the original coordinates as u(t)) will cause
vC(t) to become unbounded! This is because these variables are coupled in the original basis (our
transformation into the eigenbasis mixes the states). Note that here, this change of basis for the input is
just modification by the scalar 1

2LC . So solving for some appropriate input that causes things to “blow
up” in the eigenbasis will complete the problem.
In this integral, what would cause the output to become larger and larger for all time? There is no
obvious approach here, and it’s less straightforward than it was in part (a). But what can we try? If
the integrand was some kind of constant, then we know for a fact that integrating that constant over t
will increase without bound as t→∞. This would require ũ(t) = ejωnt to make ṽC(t) unbounded, or
ũ(t) = e−jωnt to make ĩL(t) unbounded.
But isn’t this two separate inputs? How can it be the case that one exponential makes voltage un-
bounded, and the other exponential makes current unbounded? Not to mention, how can we have an
input that’s a complex exponential, and not a real value like sine or cosine? We need to first take a deep
breath and relax. The variables in transformed coordinates are neither voltages nor currents, but each
is a complex linear combination of them. The takeaway from the above calculation is that we want the
input to have both ejωnt and e−jωnt components in it.
This is something that we can do. Consider an input of the form u(t) = cos(ωnt). We know that
sinusoids are superpositions of complex exponentials, so this single real-valued input allows us to
capture the effects of both the positive- and negative- frequency complex exponentials. How will this
input play into out analysis above? Well, if u(t) = cos(ωnt), then ũ(t) = 1

2LC cos(ωnt), which is still
a cosine. Then, we can compute the magnitude of the integrals (and split them apart) as follows:

ṽC(t) = ejωnt

∫ t

0
e−jωnθũ(θ) dθ (58)
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=
1

4LC
ejωnt

∫ t

0
e−jωnθ

(
ejωnθ + e−jωnθ

)
dθ (59)

=
1

4LC
ejωnt

(∫ t

0
e−jωnθejωnθ dθ +

∫ t

0
e−jωnθe−jωnθ dθ

)
(60)

=
1

4LC
ejωnt

(∫ t

0
1 dθ +

∫ t

0
e−2jωnθ dθ

)
(61)

=
1

4LC
ejωnt

t− j

(
1− e−2jωnt

)
2ωn

 (62)

ĩL(t) = ejωnt

∫ t

0
ejωnθũ(θ) dθ (63)

=
1

4LC
ejωnt

(∫ t

0
ejωnθ

(
ejωnθ + e−jωnθ

)
dθ

)
(64)

=
1

4LC
ejωnt

(∫ t

0
ejωnθejωnθ dθ +

∫ t

0
ejωnθe−jωnθ dθ

)
(65)

=
1

4LC
ejωnt

(∫ t

0
e2jωnθ dθ +

∫ t

0
1 dθ

)
(66)

=
1

4LC
ejωnt

j

(
1− e−2jωnt

)
2ωn

+ t

 (67)

So, now we have clearly growing terms in transformed coordinates. To see that the original state is
growing, we just convert back. The original current is the sum of these two functions.

iL(t) = ĩL(t) + ṽC(t) (68)

=
1

4LC
ejωnt

t+ j

(
1− e−2jωnt

)
2ωn

+
1

4LC
ejωnt

t− j

(
1− e−2jωnt

)
2ωn

 (69)

=
t

2LC
cos(jωnt) + · · · (70)

Remember that only one of the product terms in the magnitude needs to be unbounded to make the
entire expression unbounded. This is clearly a growing cosine plus something that is not growing.
Wow! We see that a sinusoidal input at the frequency ωn causes the system to become unstable.
Now, let’s address another question you may have after reading this. In part (a), why didn’t we use
an input of the form e−2t? Would this not have performed the same cancellation of the exponent in
the integral, allowing us to integrate the quantity 1 as time increased? The answer is, absolutely we
could have used such an input. However, that integral had an e−2t factor outside the integral, and so
the overall result would have actually been 2te−2t. Try plotting this against 1 − e−2t, and notice that
the first expression is always smaller, consistent with our assertion that to maximize the integrand, u(t)
should have magnitude 1. Alternatively, we can express 2te−2t as 2t

e2t
. Which function grows faster,

the numerator or denominator? It’s the exponential (can be seen from a Taylor expansion or a plot),
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and since the denominator grows faster, the overall value decays.
Why don’t we have the same kind of decay happening in this subpart, with the LC circuit? This is
because our λ values are imaginary, and

∣∣∣ejx∣∣∣ = 1 for any real x (here, x = 1√
LC

). That is, the λ terms
here signify oscillatory behavior, not exponential growth or decay. This means that the t from the
integrand has an influence that isn’t mitigated by a dying exponential, and is able to drive the output to
infinity.
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