EECS 16B Designing Information Devices and Systems II Fall 2021 Discussion Worksheet

The following notes are useful for this discussion: Note 10 and Note 11.

1. Changing behavior through feedback

In this question, we discuss how feedback control can be used to change the effective behavior of a system.
(a) Consider the scalar system:

$$
\begin{equation*}
x[i+1]=0.9 x[i]+u[i]+w[i] \tag{1}
\end{equation*}
$$

where $u[i]$ is the control input we get to apply based on the current state and $w[i]$ is the external disturbance, each at time i.
Is the system stable? If $|w[i]| \leq \epsilon$, what can you say about $|x[i]|$ at all times i if you further assume that $u[i]=0$ and the initial condition $x[0]=0$? How big can $|x[i]|$ get?
Solution: The system is stable, as $\lambda=0.9 \rightarrow|\lambda|<1$. We can say that $|x[i]|$ is bounded at all time if the disturbance is bounded. Unrolling the system's recursion and extrapolating the general form,

$$
\begin{align*}
x[0] & =0 \tag{2}\\
x[1] & =w[0] \tag{3}\\
x[2] & =0.9 w[0]+w[1] \tag{4}\\
x[3] & =0.9^{2} w[0]+0.9 w[1]+w[2] \tag{5}\\
\vdots & \tag{6}\\
x[i] & =\sum_{k=0}^{i-1} 0.9^{i-k-1} w[k] . \tag{7}
\end{align*}
$$

We can check that this form works by plugging it into our recursion:

$$
\begin{equation*}
x[i+1]=0.9 x[i]+w[i]=0.9\left(\sum_{k=0}^{i-1} 0.9^{i-k-1} w[k]\right)+w[i]=\sum_{k=0}^{i-1} 0.9^{i-k} w[k]+w[i]=\sum_{k=0}^{i} 0.9^{i-k} w[k] \tag{8}
\end{equation*}
$$

which is exactly what our formula predicts.
Thus

$$
\begin{equation*}
|x[i]|=\left|\sum_{k=0}^{i-1} 0.9^{i-k-1} w[k]\right| \leq \sum_{k=0}^{i-1}\left|0.9^{i-k-1} w[k]\right|=\sum_{k=0}^{i-1} 0.9^{i-k-1} \epsilon \tag{9}
\end{equation*}
$$

In the limit as $i \rightarrow \infty$, by the geometric series formula,

$$
\begin{equation*}
|x[i]| \leq \frac{\epsilon}{1-0.9}=10 \epsilon \tag{10}
\end{equation*}
$$

(b) Suppose that we decide to choose a control law $u[i]=f x[i]$ to apply in feedback. For what values of λ can you get the system to behave like:

$$
\begin{equation*}
x[i+1]=\lambda x[i]+w[i] ? \tag{11}
\end{equation*}
$$

How would you pick f ?

(Note: In this case, $w[i]$ can be thought of like another input to the system, except we can't control it.)
Solution: We can control the system to have any value of λ, as long as we're not limited on the values of f.

$$
\begin{equation*}
x[i+1]=0.9 x[i]+f x[i]+w[i]=\lambda x[i]+w[i] \tag{12}
\end{equation*}
$$

Fitting terms, $f=\lambda-0.9$. Note we can get a $\lambda>1$ if we so desire; there is nothing stopping us from putting arbitrarily big/small λ by the choice of f.
(c) For the previous part, which f would you choose to minimize how big $|x[i]|$ can get?

Solution: From eq. (11), in order to have the minimum bound on $|x[i]|, \lambda=0$. To get this λ, $f=-0.9$. In the limit as $i \rightarrow \infty$ in this case,

$$
\begin{equation*}
|x[i]| \leq \frac{\epsilon}{1-0}=\epsilon \tag{13}
\end{equation*}
$$

The minimum bound on $|x(i)|=\epsilon$ is the same bound as on the disturbance.
(d) What if instead of a 0.9 , we had a 3 in the original eq. (1). What, if anything, would change?

Solution: If our system were now,

$$
\begin{equation*}
x[i+1]=3 x[i]+u[i]+w[i], \tag{14}
\end{equation*}
$$

the system would no longer be stable. However, we can still choose any eigenvalue λ using closed loop feedback. In this case, $f=\lambda-3$.
(e) Now suppose that we have a vector-valued system with a vector-valued control:

$$
\begin{equation*}
\vec{x}[i+1]=A \vec{x}[i]+B \vec{u}[i]+\vec{w}[i] \tag{15}
\end{equation*}
$$

where we further assume that B is an invertible square matrix. Futher, suppose we decide to apply linear feedback control using a square matrix F so we choose $\vec{u}[i]=F \vec{x}[i]$.
For what values of matrix G can you get the system to behave like:

$$
\begin{equation*}
\vec{x}[i+1]=G \vec{x}[i]+\vec{w}[i] ? \tag{16}
\end{equation*}
$$

How would you pick F given knowledge of A, B and the desired goal dynamics G ?
Solution: Since in this case our input is the same rank as our output, we can arbitrarily choose the
matrix G. As long as B is invertible (as given), we can define:

$$
\begin{align*}
\vec{x}[i+1] & =A \vec{x}[i]+B \vec{u}[i]+\vec{w}[i] \tag{17}\\
& =A \vec{x}[i]+B F \vec{x}[i]+\vec{w}[i] \tag{18}\\
& =(A+B F) \vec{x}[i]+\vec{w}[i] \tag{19}\\
& =G \vec{x}[i]+\vec{w}[i] \tag{20}
\end{align*}
$$

Therefore, matching terms,

$$
\begin{equation*}
A+B F=G \Longrightarrow F=B^{-1}(G-A) \tag{21}
\end{equation*}
$$

2. Controlling states by designing sequences of inputs

This is something that you saw in 16A in the Segway problem. In that problem, you were given a semirealistic model for a segway. Here, we are just going to consider the following matrix chosen for ease of understanding what is going on:

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \tag{22}\\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \vec{b}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Let's assume we have a discrete-time system defined as follows:

$$
\begin{equation*}
\vec{x}[i+1]=A \vec{x}[i]+\vec{b} u[i] . \tag{23}
\end{equation*}
$$

(a) We are given the initial condition $\vec{x}[0]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$. Let's say we want to achieve $\vec{x}[\ell]=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$ for some specific $\ell \geq 0$. We don't need to stay there, we just want to be in this state at that time. What is the smallest ℓ such that this is possible? What is our choice of sequence of inputs $u[i]$?
Solution: To ease notation, let

$$
\vec{x}[i]=\left[\begin{array}{l}
x_{1}[i] \tag{24}\\
x_{2}[i] \\
x_{3}[i] \\
x_{4}[i]
\end{array}\right] .
$$

Writing out expressions for $x[i]$ we get:

$$
\begin{gather*}
\vec{x}[1]=A \vec{x}[0]+\vec{b} u[0]=\left[\begin{array}{c}
x_{2}[0] \\
x_{3}[0] \\
x_{4}[0] \\
u[0]
\end{array}\right], \tag{25}\\
\vec{x}[2]=\left[\begin{array}{c}
x_{3}[0] \\
x_{4}[0] \\
u[0] \\
u[1]
\end{array}\right], \quad \vec{x}[3]=\left[\begin{array}{c}
x_{4}[0] \\
u[0] \\
u[1] \\
u[2]
\end{array}\right], \tag{26}
\end{gather*}
$$

and if $i \geq 4$,

$$
\vec{x}[i]=\left[\begin{array}{l}
u[i-4] \tag{27}\\
u[i-3] \\
u[i-2] \\
u[i-1]
\end{array}\right]
$$

Hence, the smallest ℓ is equal to 4 , with $u[0]=[1], u[1]=[2], u[2]=[3], u[3]=[4]$.
(b) What if we started from $\vec{x}[0]=\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right]$? What is the smallest ℓ and what is our choice of $u[i]$?

Solution: Looking over our expressions for $\mathrm{x}[\mathrm{i}]$ from the previous part, we see that the earliest ℓ whose expression can be set to the desired state is $\ell=1$ requiring $u[0]=4$.

$$
\vec{x}[1]=A \vec{x}[0]+\vec{b} u[0]=\left[\begin{array}{c}
x_{2}[0] \tag{28}\\
x_{3}[0] \\
x_{4}[0] \\
u[0]
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
3 \\
u[0]
\end{array}\right] .
$$

(c) If we start from $\vec{x}[0]=\left[\begin{array}{l}3 \\ 2 \\ 1 \\ 0\end{array}\right]$, what is smallest ℓ such that $\vec{x}[\ell]=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$, what is corresponding $u[i]$? Solution: Looking over our expressions for $\mathrm{x}[\mathrm{i}]$, we see that the earliest ℓ whose expression can be set to the desired state in this case is $\ell=4$ requiring $u[0]=1, u[1]=2, u[2]=3, u[3]=4$.
(d) If you would like to make sure that at time ℓ we are at $\vec{x}[\ell]=\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ for the state, what controls could you use to get there? How big does ℓ have to be for this strategy to work?
Solution: As you might notice, using inputs $u[i] \in\{a, b, c, d\}$ (in that order), we can get to any desired state $\vec{x}[\ell]=\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$. Hence with $\ell=4$, we can guarantee that the $\vec{x}[\ell]$ is our desired state.

Contributors:

- Anant Sahai.
- Regina Eckert.
- Kumar Krishna Agrawal.
- Kuan-Yun Lee.
- Kareem Ahmad.

