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EECS 16B Designing Information Devices and Systems II
Fall 2021 Discussion Worksheet Discussion 8A
In this discussion we review problems from Spring 2021, Midterm.

1. Honor Code

2. Pre-Examination

3. Potpourri!

(a) [4 points] You are given the graph in Figure 1. Express the coordinates of vectors ~v and ~w in both
Cartesian ((x, y)) and Polar

(
rejθ

)
form. You do not need to show your work for this subpart.

You may use the atan2 or tan−1 function for angle (θ) as necessary.
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Figure 1: Vectors in the x− y plane

i. Label ~v with its corresponding Cartesian ((x, y)) and Polar
(
rejθ

)
coordinates, in the given

form.
Solution:

Vector ~v Cartesian = (3, 1)

Vector ~v Polar =
√

10ej atan2(1,3) ≡
√

10ej tan−1( 1
3)

ii. Label ~w with its corresponding Cartesian ((x, y)) and Polar
(
rejθ

)
coordinates, in the given

form.
Solution:

Vector ~w Cartesian = (0, 1)

Vector ~w Polar =1ej
π
2 ≡ −1e−j

π
2 ≡ 1ej

−3π
2 ≡ −1ej

3π
2
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(b) [6 points] You are given an input voltage signal below:

vin(t) = −2 cos

(
ωt+

π

3

)
. (1)

Convert the signal of eq. (1) to its phasor representation. That is, find Ṽin. Justify your answer.

Solution:

Ṽin = −ej
π
3

We can use Euler’s formulas here, which states that:

cos(x) =
1

2

(
ejx + e−jx

)
sin(x) =

1

2j

(
ejx − e−jx

)
Applying the first of these formulas and simplifying vin(t):

vin(t) = −2 cos

(
ωt+

π

3

)
(2)

= −2 · 1

2

(
ej(ωt+

π
3 ) + e−j(ωt+

π
3 )
)

(3)

= −1
(
ejωtej

π
3 + e−jωte−j

π
3

)
(4)

= −ejωtej
π
3 − e−jωte−j

π
3 (5)

=
(
−ej

π
3

)
ejωt +

(
−e−j

π
3

)
e−jωt (6)

When we have a term of the form u(t) = Ũejωt + Ũe−jωt, we denote Ũ as the phasor for the time-
domain signal. So, we apply this logic here:

Ṽin = −ej
π
3 (7)

Alternatively,

Ṽin = −ej
π
3 = ejπej

π
3 = ej 4π

3 (8)

(c) [6 points] You decided to analyze the transfer function of a band-pass filter, and have generated the
Bode plots in Figure 2a and Figure 2b for H (ω). If your input voltage signal is

vin(t) = 10 cos

(
ωst+

π

3

)
, (9)

where ωs = 104, what is vout(t)? Show your work and explain your answers. You do not need to copy
the figures below to your answer sheet, you may just tell us what you read from the Bode plots.
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(a) Magnitude Bode Plot for part (c).
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(b) Phase Bode Plot for part (c).

Figure 2: Bode Plots for part (c).

Solution:

vout(t) = 0.1 cos
(

104t+ 4π
3

)
≡ 0.1 cos

(
104t− 2π

3

)

Given the Bode plots, we need to examine how the transfer function affects two quantities: the mag-
nitude of the input voltage, and the phase of the input voltage. The Magnitude Bode Plot reveals that
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at ω = 104, the value is 10−2. The Phase Bode Plot reveals that at ω = 104, the value is −π radians.
The general form of the output voltage is:

vout(t) = |H (ω) ||vin(t)| cos
(
ωt+ φ+ ]H (ω)

)
(10)

where φ is the phase of the input voltage (here, π3 ). Combining these results, we find:

vout(t) = 0.01 · 10 cos

(
104t+

π

3
− π

)
(11)

= 0.1 cos

(
104t− 2π

3

)
(12)
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4. Analyzing an LC-LC Band-Stop/Notch Filter

In this sub-part, you will partially analyze a circuit built entirely out of L,C components as shown in
Figure 3. Assume that the circuit is operating at a frequency of ω = ωs (i.e. vin(t) = cos (ωst)).

L1

C1 Ṽout(ω)

L2

C2

Ṽin(ω)
a b

c

Z1

Z2

Figure 3: LC bandstop filter.

(a) [5 points] Find Ṽout(ω) in terms of Z1, Z2, Ṽin(ω). You do not need to compute Ṽin(ω) for this part.
Show your work.

Solution:

Ṽout(ω) = Z2
Z1+Z2

Ṽin(ω)

The equivalent circuit we get is as follows:

Z1

Z2

Ṽout(ω)Ṽin(ω)

Since we are in the phasor domain, these impedances can be treated as resistors, and our output voltage
phasor can be found as a function of the input voltage phasor by applying the voltage-divider equation.
Doing so, we find that:

Ṽout(ω) =
Z2

Z1 + Z2
Ṽin(ω) (13)

(b) [5 points] Find Z1, the equivalent impedance between terminals a and b, in terms of L1, C1, and
ωs. Leave your answer in the form jMN , where M and N are real.
What is the impedance Z1 at ωs = 1√

L1C1
? Show your work and justify your answers.

Solution:
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Z1 = jωsL1

1−ω2
sL1C1

. For ωs = 1√
L1C1

, Z1 =∞

The impedances are in parallel. Using that ZL = jωsL and ZC = 1
jωsC

(at the frequency ωs of the
input phasor), we find:

Z1 = ZL1 ‖ ZC1

=
ZL1ZC1

ZL1 + ZC1

=
jωsL1

1
jωsC1

jωsL1 + 1
jωsC1

=
jωsL1

(jωsL1jωsC1) + 1

=
jωsL1

1− ω2
sL1C1

At ωs = 1√
L1C1

:

Z1 =
jωsL1

1− ω2
sL1C1

Z1 =
jωsL1

0
Z1 =∞

(c) [5 points] Find Z2, the equivalent impedance between terminals b and c, in terms of L2, C2, and
ωs. Leave your answer in the form jMN , where M and N are real.
What is the impedance Z2 at ωs = 1√

L2C2
? Show your work and justify your answers.

Solution:

Z2 = j
(
ωsL2 − 1

ωsC2

)
. For ωs = 1√

L2C2
, Z2 = 0.

Simplifying the series LC combination, we find (since 1
j = −j):

Z2 = ZL2 + ZC2

= jωsL2 +
1

jωsC2

= j

(
ωsL2 −

1

ωsC2

)
At ωs = 1√

L2C2
:

Z2 = j

(
L2√
L2C2

−
√
L2C2

C2

)
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= j

(√
L2

C2
−
√
L2

C2

)
= 0
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5. Hey Circuit, are you a Low-Pass Filter?

You have a mystery black box and you believe it contains an RC low-pass filter. You want to use the tools
of converting a model from continuous-time to discrete-time and System ID to test your guess.

Computer-generated ud[k]

DAC −
+ u(t)

?

−

+

Vout(t) ADC
Vout[k]

Figure 4: A schematic to show how our computer generated signals will interface through the DAC and the ADC with
the mystery box.

−
+u(t)

R

C

−

+

Vout(t)

Figure 5: RC circuit that you suspect is inside the mystery (?) box.

(a) [4 points] You know from lecture that the continuous-time equation

dx(t)

dt
= λx(t) + bu(t), (14)

can be converted to a discrete-time equation given by

xd[k + 1] = eλ∆xd[k] + b

(
eλ∆ − 1

λ

)
ud[k], (15)

where xd[k] = x(k∆) and ud[k] = u(k∆), for some constant ∆.
Assume that eq. (14) references the RC circuit in Figure 5. For a low-pass RC filter with input u(t)
you know that the following differential equation holds:

dVout(t)

dt
= − 1

RC
Vout(t) +

1

RC
u(t). (16)

Convert this continuous system to a discrete-time difference equation for Vout[k] in the form of

Vout[k + 1] = λdVout[k] + bdud[k], (17)

and write λd and bd in terms of R,C, and ∆. Show your work.

Solution: Comparing eq. (16) to eq. (14) we infer that λ = − 1
RC and b = 1

RC . Using the continuous
to discrete time conversion:
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Vout[k + 1] = e−
∆
RC Vout[k] +

(
1− e−

∆
RC

)
ud[k],

λd = e−
∆
RC bd =

(
1− e−

∆
RC

)
.

(b) [5 points] Now ignoring the physics of the model, you decide to use a data-centric approach to
find λd and bd in your model. In order to do so, you apply a sequence of inputs for 4 timesteps
ud[0], ud[1], ud[2], ud[3] and observe Vout[0], Vout[1], Vout[2], Vout[3], and Vout[4]. You decide to use

least squares of the form D~p ≈ ~y, with ~p =

[
λd
bd

]
. Write the matrix D and vector ~y. Write your

answers in the provided box.

Solution:

D =


Vout[0] ud[0]
Vout[1] ud[1]
Vout[2] ud[2]
Vout[3] ud[3]

 , y =


Vout[1]
Vout[2]
Vout[3]
Vout[4]

 . (18)
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6. A Spring System

The tools we have learned in this class are not limited to circuits. In this problem we will examine the
following spring-mass system. This system can be modeled with eq. (19), where x(t) is the position of the
mass at time t, m is the constant mass of the block, and u(t) is the force input to the system at time t.

d2x(t)

dt2
= −k1

m
x(t)− k2

m

dx(t)

dt
+

1

m
u(t). (19)

(a) [4 points] Rewrite eq. (19) as a system of differential equations in the matrix form. Let the state

variables be ~y =

[
x(t)
dx(t)
dt

]
. Show your work.

Solution: Since we have defined our state as ~y(t) =

[
x(t)
dx(t)
dt

]
, to write this in matrix form we need

equations for dx(t)
dt and d2x(t)

dt2
in terms of x(t), dx(t)

dt , and u(t).

dx(t)

dt
= 0 · x(t) + 1 · dx(t)

dt
+ 0 · u(t) (20)

d2x(t)

dt2
= −k1

m
· x(t)− k2

m
· dx(t)

dt
+

1

m
· u(t) (21)

Equation (20) comes from setting dx(t)
dt equal to itself. Equation (21) is identical to equation (19).

Putting these two equations together in the form d~y(t)
dt = A~y(t) + bu(t) we get the following system

of differential equations in matrix form:[
dx(t)
dt

d2x(t)
dt2

]
=

[
0 1

−k1
m −k2

m

][
x(t)
dx(t)
dt

]
+

[
0
1
m

]
u(t).

(b) [10 points] Regardless of your answer to the previous question, assume that you end up with the
following system:

d~y(t)

dt
=

[
0 1
−3 −4

]
~y(t) +

[
0
2

]
u(t). (22)

The matrix A =

[
0 1
−3 −4

]
can be diagonalized as A = V ΛV −1 where

V =

[
1 1
−1 −3

]
, (23)

Λ =

[
−1 0
0 −3

]
, (24)

V −1 =

[
3
2

1
2

−1
2 −1

2

]
. (25)
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If the input is fixed to a constant u(t) = u0 ∈ R for all t, find the solution to the system of differential

equations in eq. (22). Use ~y(0) =

[
α
0

]
as the initial condition. Show your work and justify your

answers.

Solution: We can transform the original system into the eigenbasis by left-multiplying eq. (22) by
V −1 and simplifying:

d~y

dt
(t) = A~y(t) +~bu(t) (26)

V −1d~y

dt
(t) = V −1A~y(t) + V −1~bu(t) (27)

d~̃y

dt
(t) = V −1(V ΛV −1)~y(t) + V −1~bu(t) (28)

= Λ~̃y(t) + V −1~bu(t) (29)

=

[
−1 0
0 −3

]
~̃y +

[
1
−1

]
u0. (30)

This gives us the following decoupled system of differential equations:

dỹ1

dt
(t) = −ỹ1(t) + u0 (31)

dỹ2

dt
(t) = −3ỹ2(t)− u0. (32)

Solving eq. (31) and eq. (32) gives:

ỹ1(t) =
(
ỹ1(0)− u0

)
e−t + u0 (33)

ỹ2(t) =

(
ỹ2(0) +

u0

3

)
e−3t − u0

3
. (34)

The initial conditions of ~̃y are:

~̃y(0) = V −1~y(0) (35)

=

[
3
2

1
2

−1
2

−1
2

][
α
0

]
=

[
3α
2
−α
2

]
. (36)

Plugging in these initial conditions into eq. (33) and eq. (34) gives the solutions in the eigenbasis as:

ỹ1(t) =

(
3α

2
− u0

)
e−t + u0, (37)

ỹ2(t) =

(
−α

2
+
u0

3

)
e−3t − u0

3
. (38)

To transform these solutions back to our original basis, recall ~y = V ~̃y:

~y =

[
1 1
−1 −3

] (3α
2 − u0

)
e−t + u0(

−α
2 + u0

3

)
e−3t − u0

3

 (39)
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=


(

3α
2 − u0

)
e−t +

(
−α

2 + u0
3

)
e−3t + 2u0

3

−
(

3α
2 − u0

)
e−t − 3

(
−α

2 + u0
3

)
e−3t

 . (40)

Thus we get our final solutions in terms of the original variables:

x(t) =

(
3α

2
− u0

)
e−t +

(
−α

2
+
u0

3

)
e−3t +

2u0

3
, (41)

dx(t)

dt
= −

(
3α

2
− u0

)
e−t − 3

(
−α

2
+
u0

3

)
e−3t. (42)

(c) [5 points] Suppose you apply a piece-wise constant input to this system, such that u(t) is constant
over intervals of ∆:

u(t) = u(i∆) = ud[i] for t ∈ [i∆, (i+ 1)∆), (43)

and suppose your solution to the differential equation for the spring-mass system for t ∈ (i∆, (i+1)∆]
is

y1(t) = (y1(i∆)− ud[i])e−(t−i∆) + 2 · y2(i∆)e−2(t−i∆) + ud[i], (44)

y2(t) = −(y1(i∆)− ud[i])e−(t−i∆) − 4 · y2(i∆)e−2(t−i∆), (45)

Given the initial conditions ~y(0) =

[
4
0

]
and input ud[0] = 4, find ~y(∆). Assume e−∆ = 0.5.

Show your work and justify your answers.

Solution: To find ~y(∆) we should just plug in ∆ into the expression in eq. (44) and eq. (45):

y1(∆) = (y1(0)− ud[0]) · e−∆ + 2y2(0) · e−2∆ + ud[0]

= (4− 4) · e−∆ + 2 · 0 · e−2∆ + 4 = 4.

y2(∆) = −(y1(0)− ud[0]) · e−∆ − 4y2(0) · e−2∆

= −(4− 4) · e−∆ − 4 · 0 · e−2∆ = 0.
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(d) [4 points] We decide to examine stability of this system in discrete time, so we fix ∆ and derive the
following discretized system:

~yd[k + 1] =

[
3
4

1
4

−1
4

1
4

]
~yd[k] +

[
3
4
1
4

]
ud[k]. (46)

Identify if this open-loop system is stable. Show your work and justify your answers.

Solution: Since this is a discrete system, in order to test if the open-loop system is stable, we need to

compute the eigenvalues of the state transition matrix

[ 3
4

1
4

−1
4

1
4

] and check if all their magnitudes

are less than one.
We follow the familiar procedure to form the characteristic polynomial:

det

[ 3
4

1
4

−1
4

1
4

]
− λ

[
1 0
0 1

] = 0 (47)

det

[3
4 − λ

1
4

−1
4

1
4 − λ

] = 0 (48)

(
3

4
− λ

)(
1

4
− λ

)
−
(
−1

4
· 1

4

)
= 0 (49)

λ2 − λ+
3

16
+

1

16
= 0 (50)

λ2 − λ+
1

4
= 0 (51)(

λ− 1

2

)2

= 0 (52)

=⇒ λ1 = λ2 =
1

2
(53)

From the above analysis, we see that the eigenvalues of the state transition matrix are λ1 = λ2 = 0.5.
Since these both have magnitude less than 1, the system is stable.

(e) [4 points] If we put the system defined in eq. (46) in feedback, setting ud[k] =
[
1 1

]
~yd[k], is the

resulting closed-loop system stable? Show your work and justify your answers.

Solution: Here, we have closed-loop feedback since the input is expressed as a scalar that depends
on the current value of the state vector. Making the given substitution, our system becomes

~yd[k + 1] =

[
3
4

1
4

−1
4

1
4

]
~yd[k] +

[
3
4
1
4

] [
1 1

]
~yd[k] (54)

=

[
3
4

1
4

−1
4

1
4

]
~yd[k] +

[
3
4

3
4

1
4

1
4

]
~yd[k] (55)
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=

[ 3
4

1
4

−1
4

1
4

]
+

[
3
4

3
4

1
4

1
4

] ~yd[k] (56)

=

[
6
4 1
0 1

2

]
~yd[k] (57)

Now that we have a single matrix, we can compute it’s eigenvalues:

det

[3
2 1
0 1

2

]
− λ

[
1 0
0 1

] = 0 (58)

det

[3
2 − λ 1

0 1
2 − λ

] = 0 (59)

(
3

2
− λ
)(

1

2
− λ

)
= 0 (60)

=⇒ λ1 =
3

2
, λ2 =

1

2
(61)

We computed that the eigenvalues that govern the dynamics of this closed-loop system are λ1 = 1.5
and λ2 = 0.5. Since |λ1| > 1, this discrete-time system is unstable.
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7. Transistor Switch Model
In this problem, we will analyze the behavior of a NAND gate driving an inverter. Figure 6a shows the
transistor model of a NAND gate and Figure 6b shows the transistor model of an inverter.

In this question assume that VDD is greater than both the NMOS threshold Vth,n and PMOS threshold |Vth,p|.

P1 P2

N2B

N1A

Vout

VDD

SP1

DP1

SP2

DP2

DN1

SN2

SN1, DN2

(a) NAND schematic with transistors.

P

N

VDD

Vout,invVin,inv

(b) Inverter schematic with transistors.

Figure 6: Transistor schematics

(a) [5 points] A diagram of a NAND gate driving an inverter is shown in Figure 7a. Consider the case
where A = VDD and B = VDD for a long time before t = 0. Then at t = 0, we switch A and B
to 0 V. The equivalent simplified circuit after this transition is shown in Figure 7b. Find Vout at time
t = 0. Write your answers in the provided box.

A

B

Vout

(a) NAND driving an Inverter

RP1, NAND

VDD

RP2, NAND CP, INV

CN, INV

Vout

(b) A Simplified Equivalent Circuit for when A = B = 0V

Figure 7: Schematic and model of a NAND gate driving an inverter

Solution: Vout(0) = 0. Since A = B = VDD for t < 0, both NMOS transistors have been switched
on due to VGSn = VDD > Vth,n until right before t = 0. Similarly, both PMOS transistors are
switched off because |VGSp| = 0 < |Vth,p|. Therefore, CN, INV is fully discharged to 0V and CP, INV is
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fully charged to VDD right before t = 0. When the transition happens the charge on capacitors cannot
jump instantaneously. So, at t = 0 the voltage at output will remain 0V.

(b) [8 points] Write the differential equation for solving Vout(t) for t ≥ 0 in the circuit shown in
Figure 7b. Specifically, find coefficients λ and b in the following symbolic differential equation:

dVout(t)

dt
= λVout(t) + bVDD, (62)

as a function of RP , CP, INV, CN, INV, and VDD. Assume that RP1,NAND = RP2, NAND = RP . Show
your work and justify your answers.

Solution: The first thing to note is that the two resistors are in parallel, so we can lump them into
one resistor with half the value. We can then start by writing a KCL at the output node:

CN, INV
dVout(t)

dt
+ CP, INV

d(Vout(t)− VDD)

dt
+

2

RP
(Vout(t)− VDD) = 0,

dVout(t)

dt
= − 2

RP (CP, INV + CN, INV)
Vout(t) +

2

RP (CP, INV + CN, INV)
VDD.

Therefore, λ = − 2
RP (CP, INV+CN, INV) and b = 2

RP (CP, INV+CN, INV) .

(c) [8 points] Solve Vout(t) in the differential equation (62) and the initial condition Vout(0). You
should leave your answer in terms of λ, b, VDD, and Vout(0). Show your work and justify your answers.

Solution:
Approach 1: We know from homework that for a differential equation of type dv(t)

dt = λv(t) + bu(t)

and initial condition v(t0), the answer is v(t) = v(t0)eλt + b

∫ t

t0

u(τ)eλ(t−τ)dτ . We will apply the

same principle here as well:

Vout(t) = Vout(0)eλt + b

∫ t

0
VDDe

λ(t−τ)dτ (63)

= Vout(0)eλt + bVDDe
λt

∫ t

0
e−λτdτ (64)

= Vout(0)eλt + bVDDe
λt · e

−λt − 1

−λ
(65)

= Vout(0)eλt +
b

λ
VDD

(
eλt − 1

)
. (66)

Approach 2: We can use variable substitution to arrive at a homogeneous differential equation and then
solve it. Define Ṽout(t) = Vout(t) + b

λVDD.

d(Vout(t) + b
λVDD)

dt
= λ

(
Vout(t) +

b

λ
VDD

)
, (67)

dṼout(t)

dt
= λṼout(t), (68)

Ṽout(t) = Ṽout(0)eλt. (69)
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We also know that Ṽout(0) = Vout(0) + b
λVDD. Substituting Vout back will give us the answer.

Vout(t) +
b

λ
VDD =

(
Vout(0) +

b

λ
VDD

)
eλt (70)

= Vout(0)eλt +
b

λ
VDD

(
eλt − 1

)
. (71)

(d) [8 points] Now consider the case where A = 0V and B = 0V for a long time before t = 0 in
Figure 7a. At t = 0 we switch A and B to VDD. Write down the state (ON/OFF) of transistors P1,
P2, N1, and N2 in the NAND gate. Draw the equivalent simplified circuit for this transition that
will help us with writing the differential equation of Vout(t). Write your answers in the provided
box.
Hint: You may find the NAND resistor-switch model in Figure 8 helpful. Don’t forget to include the
inverter’s capacitors, CN, INV and CP, INV, which are loading the NAND gate.

A

CP1, NAND

VDD

GP1

CN1, NAND

GN1

B

CP2, NAND

GP2

GN2

CN2, NAND

RP1, NAND RP2, NAND

RN1, NAND

RN2, NAND

VoutP1 P2

N1

N2

Figure 8: NAND Model: Capacitances

Solution:
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Both of our inputs are high (VDD). Thus |VGSp| = 0V =⇒ both PMOS transistors P1 and P2 are
OFF. At the same time VGSn = VDD =⇒ both NMOS transistors N1 and N2 are ON.
Since the PMOS transistors are both off, their switches in the equivalent circuit are open. As a result
their resistors RP1, NAND and RP2, NAND are floating and don’t need to be included.
The NMOS transistors, on the other hand, are both on, so in the simplified equivalent circuit, their
resistors RN1, NAND and RN2, NAND connect the output to ground.
In addition, Vout drives an inverter, which means that Vout is connected to two gate capacitances: CP, INV
to VDD and CN, INV to ground.
Thus we end up with the simplified circuit below.

RN1, NAND

RN2, NAND

VDD

CP, INV

CN, INV

Vout(t)
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8. Loud Neighbors

The neighbors keep throwing loud parties and Divija is having trouble sleeping despite her ear plugs. She
decides to build a device to reduce the noise, and needs your help designing the filters.

(a) [4 points] Divija decides to build a band-stop filter by combining a low-pass and a high-pass filter.
To start off, consider the skeleton circuit in Figure 9. What is Vout in terms of u1, u2, and R?

−

+
+

−

Vout

R

R

R

+

−

Vin

1

2

u1

u2

Figure 9: Skeleton Circuit for part (a).

Solution: Since this ideal op-amp is in negative feedback, v− = v+. Doing KCL at v− we get:

u1

R
+
u2

R
= −Vout

R
.

Solving for Vout we get:
Vout = −(u1 + u2).

(b) [6 points] Design a high-pass filter for Box 2. This should be a circuit with cutoff frequency
ωc = 104rad/s that can drive an arbitrary load. You may use one resistor, one op-amp, and one
1µF = 10−6F capacitor. Choose the value of the resistor to get the correct cut-off frequency ωc.
Show your work and justify your answers.
[Question Continues on Next Page]
Solution:

−

+
+

−

u2
1µF

Vin

100Ω
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(c) [6 points] Divija designed the low-pass filter shown in Figure 10 for a cut-off frequency of ωc =
102rad/s to be used in Box 1. To verify that the circuit she built matched the circuit she designed, she
decided to test the circuit in isolation by applying an input Vin and measuring the filter’s output Vout.
The input output behavior of the circuit she built is shown in Figure 11.

Vout

10kΩ

Vin

1µF

Figure 10: The filter Divija intended to build.

0 0.2 0.4 0.6 0.8 1

−1

0

1

2

t(s)

V

Vin(t) = cos(10t)

Vout(t) = 0.1cos(10t+ π/2)

Figure 11: Input-Output behavior of the filter Divija built.

What is the most likely cause for this behavior? Show your work and justify your answers.

i. The resistors and capacitors were swapped.
ii. She used an inductor instead of the resistor.

iii. She used a 10µF capacitor and a resistor of 1kΩ.

Solution: (i)
Note that the Vin in the graph has a low frequency (time is in units of seconds).

i. Correct: This would result in a high pass filter, which would attenuate the low-frequency Vin as
shown.

ii. Incorrect: At low frequencies, the swapping the resistor with an inductor would still preserve low
frequencies.

iii. Incorrect: Multiplying the capacitor and dividing the resistor values by 10 would not change the
transfer function.

[Question Continues on Next Page]
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(d) [8 points] After looking through the available components Divija realizes that she doesn’t have enough
capacitors and decides to build the filter with inductors instead. Assume she builds the overall circuit
in Figure 12. Find the transfer functions H1(ω) = ũ1

Ṽin
and H2(ω) = ũ2

Ṽin
in terms of L1, L2, R1,

R2, and Rs. Show your work and justify your answers.

−

+

OA3
+

−

Vout

Rs

Rs

Rs

−

+

OA1v1

R1

L1

u1

−

+

OA2v2

L2

R2

u2

+

−

Vin

Figure 12: Overall Circuit

Solution:
Notice that OA1 is in the buffer configuration, so ũ1 = ṽ1. We can use the voltage divider formula to
solve for ṽ1:

ṽ1 =
Zbottom

Ztotal
Ṽin =

ṼinR1

R1 + jωL1
. (72)

Thus

H1(ω) =
R1

R1 + jωL1
=

1

1 + jωL1/R1
.

Applying the same analysis to u2 we see that OA2 is also in the buffer configuration. Thus ũ2 = ṽ2 .
Again, we can use the voltage divider equation to solve for ṽ2:

ṽ2 =
Zbottom

Ztotal
Ṽin =

ṼinjωL2

R1 + jωL2
. (73)

Thus

H2ω) =
jωL2

R2 + jωL2
=

jωL2/R2

1 + jωL2/R2
.
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(e) [6 points] Assume the overall transfer function of the final circuit in Figure 12, H(ω) = Ṽout

Ṽin
, is

H(ω) =

(
1

1 + jω/ωc1
+

jω/ωc2
1 + jω/ωc2

)
, (74)

where ωc2 = 100ωc1. Qualitatively describe the magnitude of the transfer function |H(ω)| in
three regions: frequencies below ωc1, frequencies between ωc1 and ωc2, and frequencies above
ωc2. Explain what the filter is doing qualitatively (for example, a low-pass filter passes low frequen-
cies but does not pass high frequencies). Show your work and justify your answers.

Solution: We can qualitatively analyze the behavior of the transfer function by taking the limits
when ω = 0 and ω → ∞. We can see that |H(0)| = 1 and |H(∞)| = 1. If we compute H(ω)

for ω ∈ [ωc1, ωc2] we can see that |H(ω)| < 1. For example at ω0 = 10ωc1 , |H(ω0)| =
√

2
101 � 1.

Therefore, this filter does not pass the frequencies between ωc1 and ωc2, forming a band-stop filter.
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