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EECS 16B Designing Information Devices and Systems II
Fall 2021 Discussion Worksheet Discussion 10B
The following notes are useful for this discussion: Note 15, Note 16

1. Computing the SVD: A “Tall” Matrix Example
Define the matrix

A =

 1 −1
−2 2
2 −2

 . (1)

(a) In this part, we will find the full SVD of A in steps.

Solution: In this subpart to calculate the full SVD, we will follow the algorithm of the SVD Note.
We select Method 1 (computing using A>A) since A is “tall”, and A>A is smaller than AA>.
(i) Compute A>A and find its eigenvalues.

Solution: First, we compute

A>A =

[
1 −2 2
−1 2 −2

] 1 −1
−2 2
2 −2

 (2)

=

[
9 −9
−9 9

]
. (3)

The eigenvalues of A>A are the roots of (λ− 9)2− 81 = 0, and therefore, λ1 = 18 and λ2 = 0.
(ii) Find orthonormal eigenvectors ~vi of A>A (right singular vectors, columns of V ).

Solution: We can find the corresponding (unit) eigenvectors for the above eigenvalues in the
usual way, by computing Null

(
A>A− λ1I

)
and Null

(
A>A− λ2I

)
. This yields that:

~v1 =

[
− 1√

2
1√
2

]
, ~v2 =

[
1√
2
1√
2

]
. (4)

(iii) Find singular values, σi =
√
λi.

Solution: A has one nonzero singular value
√

18 = 3
√

2, and the other singular value is zero.
(iv) Find the orthonormal vectors ~ui (and for nonzero σ, you can use ~vi).

Hint: given ~vk corresponding to nonzero σ, we can compute ~uk = 1
σk
A~vk.

Another hint: How can we extend a basis, and why is that needed here? Note what the Jupyter
notebook contains.
Solution: We obtain:

~u1 =
1

σ1
A~v1 =

1

3
√

2

 1 −1
−2 2
2 −2

[− 1√
2

1√
2

]
=

−1
3

2
3
−2

3

 (5)
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To complete a basis of R3 as required for the full SVD, we can do Gram-Schmidt using the Jupyter
notebook to get

~u2 =


√
8
3
1

3
√
2

− 1
3
√
2

 ~u3 =

 0
1√
2
1√
2

 (6)

(v) Use the previous parts to write the full SVD of A.
Solution: Finally, we compose this information, and write that A can be decomposed as:

A = 3
√

2

−1
3

2
3
−2

3

[− 1√
2

1√
2

]
︸ ︷︷ ︸

compact SVD

=

−
1
3

√
8
3 0

2
3

1
3
√
2

1√
2

−2
3 − 1

3
√
2

1√
2


3
√

2 0
0 0
0 0

[− 1√
2

1√
2

1√
2

1√
2

]
︸ ︷︷ ︸

full SVD

. (7)

The full SVD representation of A is given below. Note that the full SVD and compact SVD
represent the same matrix; the compact form merely omits the columns/rows of U or V which
will hit the zero entries of Σ.

(vi) Use the Jupyter notebook to run the code cell that calls numpy.linalg.svd on A. What
is the result? Does it match our result above?
Solution: The SVD that Jupyter notebook gives is different because of the non-uniqueness
of Gram-Schmidt. We can extend a given set of vectors to an orthonormal basis in an infinite
number of ways, so the SVD is not unique. Furthermore, it is important to note that the extended
columns of U only ever multiply with the zero-entries of Σ. So, they cannot impact the final
result of A. However, it is still critical that all the columns of U are in fact mutually orthogonal
and normalized.

(b) Find the rank of A.
Solution: A has 1 nonzero singular value. So A has rank 1.

(c) Find a basis for the range (or column space) of A.
Solution: We know if A = UΣV > is an SVD, then the columns of U with nonzero corresponding
singular values are a basis for the column space of A. Any columns corresponding to σ = 0 cannot
add to the span. Therefore, matching terms with the SVD of A,

range(A) = span



−1/3

2/3
−2/3



 (8)

(d) Find a basis for the null space of A.
Solution: We know ifA = UΣV > is a full SVD, then the columns of V with corresponding singular
values equal to 0 are a basis for the null space of A. Thus

Null(A) = span



[

1/
√

2

1/
√

2

]
 (9)
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(e) We now want to create the SVD of A>. Rather than repeating all of the steps in the algorithm, feel
free to use the jupyter notebook for this subpart (which defines a numpy.linalg.svd command).
What are the relationships between the matrices composing A and the matrices composing A>?
Solution: We know thatA has an SVD representation of UΣV > as we solved for above. One natural
approach to solving for the SVD of A> is to take the transpose of the SVD terms, and “reassign
variables”. That is, we can say that A> has SVD U?Σ?V

>
? , and to find how these new ? variables

relate to the originals, we write:

A> =
(
UΣV >

)>
= V Σ>U> (10)

Now, pattern-matching, we can say that U? = V , Σ? = Σ>, V >
? = U> =⇒ V? = U . Note how the

roles have exchanged, and Σ is transposed.
We can write now write the full SVD ofA> (feel free to confirm that the multiplication yields the right
result):

A> =

[
− 1√

2
1√
2

1√
2

1√
2

][
3
√

2 0 0
0 0 0

]
−1

3
2
3 −2

3√
8
3

1
3
√
2
− 1

3
√
2

0 1√
2

1√
2

 (11)

2. Understanding the SVD

We can compute the SVD for a wide matrix A with dimension m × n where n > m using A>A with the
method covered in lecture. However, when doing so, you may realize that A>A is much larger than AA>

for such wide matrices. This makes it more efficient to find the eigenvalues for AA>. In this question, we
will explore how to compute the SVD using AA> instead of A>A.

(a) What are the dimensions of AA> and A>A?
Solution: Since A is m × n, AA> is (m × n) × (n × m), which is m × m. Similarly A>A is
(n×m)× (m× n) which is n× n.

(b) Given that the SVD of A is A = UΣV >, find a symbolic expression for AA> in terms of U , Σ,
V >. Simplify where possible!

Solution:

AA> = UΣV >V︸ ︷︷ ︸
I

Σ>U> (12)

= UΣΣ>U> (13)

(c) Using the solution to the previous part, how can we find a U and Σ from AA>? Hint: first, think
about matrix dimensions. Next, consider the properties of the SVD, and what each matrix signifies.
Another Hint: you may want to compute for yourself, based on the structure of Σ, what Σ>Σ and ΣΣ>

are.

Solution: Knowing that AA> is a symmetric matrix, we know that its normalized eigenvectors will
be orthonormal.
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From the properties of the SVD, we know that U is an orthonormal matrix of dimension m ×m and
ΣΣ> is an m ×m diagonal matrix, with the entries on the diagonal being σi2. Each σi is a singular
value of A.
We can calculate U by diagonalizing the symmetric matrix AA>. By the spectral theorem for real
symmetric matrices, we will get an orthonormal basis of eigenvectors. The square root of the corre-
sponding eigenvalues of AA> will give us the singular values σi.
We can then construct Σ by putting these on the diagonal of an otherwise zero matrix with the same
dimensions as A, and the corresponding eigenvectors will form the U matrix.

(d) Now that we have found the singular values σi and the corresponding vectors ~ui in the matrix U , can
you find the corresponding vectors ~vi in V ? Hint: Apply the definition of an eigenvector. What do
the ~vi vectors signify with regards to A>A?

Solution: We know everything except for V . In particular, we know ~ui is an eigenvector of AA>

with eigenvalue σ2i . Then

AA>~ui = σ2i ~ui (14)

A>AA>~ui = A>(σ2i ~ui) (15)

A>A(A>~ui) = σ2i (A
>~ui). (16)

So we see that A>~ui is an eigenvector of A>A with eigenvalue σ2i . Define ~vi = A>~ui
‖A>~ui‖ . Then

~vi =
A>~ui∥∥A>~ui

∥∥ (17)

=
A>~ui√∥∥A>~ui

∥∥2 (18)

=
A>~ui√(

A>~ui
)>(

A>~ui
) (19)

=
A>~ui√
~u>i AA

>~ui

(20)

=
A>~ui√
~u>i σ

2
i ~ui

(21)

=
A>~ui√
σ2i ‖~ui‖

2
(22)

=
A>~ui√
σ2i

(23)

=
A>~ui
σi

. (24)

(e) Now we have a way to find the vectors ~vi in matrix V ! Use the fact that the vectors ~ui, ~uj are or-
thonormal to show that ~vi,~j in V (corresponding to nonzero σi, σj and i, j ≤ n) are orthonormal
by direct computation.
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Solution: To verify that ~vi in V are orthonormal, we must show that:

i. ~vi are mutually orthogonal
ii. each ~vi has norm 1.

Orthogonality:
To show orthogonality, we must show that any two vectors ~vi = A>~ui

σi
and ~vj =

A>~uj
σj

, with i 6= j,
have an inner product of zero. Writing the inner product out:

~v>i ~vj =
~u>i A

σi

A>~uj
σj

(25)

=
~u>i AA

>~uj
σiσj

(26)

=
(σj)

2~u>i ~uj
σiσj

(27)

= 0 (28)

In going from eq. (26) to eq. (27), we could have substituted the matrix product AA> with the answer
of part c) and simplified. Here, we recognize that the inner matrix ΣΣ> is diagonal with σi on the
diagonals. This is because we know that ~ui and ~uj are orthonormal as they are eigenvectors of a
symmetric matrix AA>.
Thus for all i 6= j,

~v>i ~vj = 0 (29)

Norm of 1: If we follow the steps above with i = j, then we see that:

~v>i ~vj = ~v>i ~vi (30)

=
(σi)

2~u>i ~ui
σiσi

(31)

=
(σi)

2

(σi)2
~u>i ~ui (32)

= 1 (33)

(f) [Practice] Given that A = UΣV >, verify that the vectors after the first n vectors in V are in the
nullspace of A.
Solution: First, we have to consider the case where the ~vi vectors from the previous part do not span
the entire space; here, we would use Gram-Schmidt to extend.
If we append the standard basis for n-dimensional space, and orthonormalize, this will give us the
desired result. The augmented collection of n + m vectors certainly spans the whole space, and so
after orthonormalization, we will have a collection of orthonormal vectors that spans the whole space.
Along the way, some vectors will be found to be linearly dependent on those that came before — this
is fine, we’ll discard these. At the end, we will have n orthonormal vectors, the first set of which are
the original ~vi.

Now, let V =
[
Vs R

]
where Vs are the {~vi} we found using the {~ui} and R is composed of the

remaining vectors found using Gram-Schmidt. Let S be an m×m diagonal square matrix with σi on
the diagonal (σi is allowed to be zero) such that Σ =

[
S 0

]
where 0 denotes filling in the remaining
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matrix dimensions with zeros.

A = UΣV > = U
[
S 0

] [V >
s

R>

]
(34)

And so:

AR = U
[
S 0

] [V >
s

R>

]
R (35)

= U
[
S 0

] [ 0
R>R

]
(36)

= U
[
0
]

(37)

= 0 (38)

Thus, everything in the subspace spanned by R maps to ~0, and this shows that the subspace is in
Null(A).

(g) [Practice] Using the previous parts of this question and what you learned from lecture, write out a
procedure on how to find the SVD for any matrix.
Solution: We calculate the SVD of matrix A as follows.

i. Pick A>A or AA> — whichever one is smaller.
ii. i. If using A>A, find the eigenvalues λi of A>A and order them, so that λ1 ≥ · · · ≥ λr > 0

and λr+1 = · · · = λn = 0.

If using AA>, find its eigenvalues λ1, . . . , λm and order them the same way.
ii. If using A>A, find orthonormal eigenvectors ~vi such that

A>A~vi = λi~vi, i = 1, . . . , r (39)

If using AA>, find orthonormal eigenvectors ~ui such that

AA>~ui = λi~ui, i = 1, . . . , r (40)

iii. Set σi =
√
λi.

If using A>A, obtain ~ui from ~ui = 1
σi
A~vi, i = 1, . . . , r.

If using AA>, obtain ~vi from ~vi = 1
σi
A>~ui, i = 1, . . . , r.

iii. If you want to completely construct the U or V matrix, complete the basis (or columns of the
appropriate matrix) using Gram-Schmidt to get a full orthonormal matrix.

The full matrix form of SVD is taken to better understand the matrix A in terms of the 3 nice matrices
U,Σ, V . Often in practice, we do not completely construct the U and V matrices. After all, in many
applications, we don’t need all the vectors.
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